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FOREWORD

This report presents the final theoretical and experimental results of a
47-month study titled Fluorine/Hydrogen Performance Evaluation Program.

The Contract, NASw-1229, was conducted by Rocketdyne, a Division of North
American Rockwell Corporation and was directed for the National Aeronautics
and Space Administration by F. Stephenson (NASA-OART) and P. Herr (NASA-
LeRC).

The report is submitted in three volumes:

Phase I, Part I Analysis, Design and Demonstration of High-
Performance Injectors for the Ligquid Fluorine-
Gaseous Hydrogen Propellant Combination

Phase I, Part II Nozzle Performance Analysis and Demonstration

Phase II Space Storable Propellant Performance Demon-

stration
ABSTRACT

This report covers work performed under Phase II of the Fluorine/Hydrogen
Performmance Evaluation Program, & research effort conducted under NASA
Contract NASw-1229. During this phase of the program, the propellants
F2-02/CH4, 0F2/CH4, F,=0,/B,H, end OF,/B,B, were tested in an altitude-
similation facility using two high-area-ratio nozzles and one low-area-
ratio nozzle, Performance and heat transfer data were recorded, analyzed

and compared with analytical predictions,.
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INTRODUCTION

The potential peyload and operational gains possible for future space-~
craft using space storable propellants have long been recognized. The
two propellant combinations most of ten considered for this role are
fluorine-oxygen/methane (F2-O2/CH4) and oxygen difluoride/diborane
(0F2/32H6). However, some uncertainties existed both in the theoretical
and experimental performance of these propellants due to the scarcity of
precision high area ratio test data and a recent major revision in the
heat of formation of OF2 by the Nationel Bureau of Standards. Therefore,
a performance imvestigation program was undertzken to establish the true
performance levels of these propellants in a high precision test program.
This program is the second phase of a larger project of propellant per—
formance characterization which alse included a performance demonstra-
tion for fluorine/hydrogen (F2/H2).

The fluorine/hydrogen phase, Phase I, begimning 27 May 1965, was con-
cerned primarily with detailing the performance characteristics of

this combination and establishing an accurate analytical performance
model. The results of Phase I were presented in the first two volumes
of the final report, During that plese the injector, combustion chamber
and nozzle configurations were selected, designed and built. The same
hardware has been carried over into Phase II.

Phase II of the program which is described in this volume of the final
report began 27 July 1967. To achieve the Phase II objectives, a series
of highly instrumented, precise performance tests were conducted with the
propellants of interest. The tests included variations in nozzle

contour, nozzle area ratio, mixture ratio, end chamber pressure,
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SUMMARY

The primary objective of Phace II of the Fluorine-Hydrogen Performance
Bvaluation Program has been the detemmination of the deliverable
performance of the oxidizers F2-02 and OF2 with the fuels CH4 and BZH6'
To achieve this objective a totel of 134 tests were conducted including
high area ratio performance tests, injector verificztion tests, and
facility verification tests., The primry perfomance results are
summarized in Pig. 1. Other major results are verification of a revised
performance potential for OFZ’ and successful operation of a thrust

chamber using gaseous diborane injection.

A summary of the tests conducted during the program is shown in Table 1.
This table also lists pages in the text where specific detailed test
information can be found. The test matrix was designed to produce direct
comparisons between OF, and F,=0,(70-30) performance with both fuels.

This was dore to determine whether the heat of formation for OF2 recom-
mended by the National Burcau of Standards, 1.95 kcal/mole at the normal
boiling point (5.84 kcal/mole at standard conditions), Ref. 1 gives a
more accurste indication of the performance of OF2 relative to F2-02(7O-30)
than does the previously accepted value of -7.4 kcal/mole.

Tests were conducted with five propellant combinations: F2—02(82.5-l7.5)/
CH,» F,=0,(70-30)/CH,, OF,/CH,, OF,/B,H., F,-0,(70-30)/BH;. Nozzle
geometries included a 60:1 area ratio 70-percent bell, a 60:1 erea ratio
15-degree cone, and a 4:1 arce ratio 15-degree come. MNixture ratio was
varied over the range of interest for each propellant. Chamber pressure
was 100 psia, except for one F2-02(7O-30)/32H6 series at 55 psia. The
nominal thrust level at 100 psia was 2500 1bf,
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Direct performance comparisons were obtained between two different F2-02
mixtures with methane fuel and between the two different nozzle contours
for both OF‘2/132H6 and F2—02(82.5-17.5 )/CH4. Low area ratio tests were
conduc ted to compare injector efficiencies derived from chamber pressure
and from thrust. The test program for Phase II was conducted at the
Rocketdyne Nevada Field Labtoratory altitude simulation facility B-3 test
stand. Because this was a new facility, a series of F2/H2 tests was
conducted to verify that data from the new test stand were consistent
with the Phase I results.

The program consisted exclusively of short duration performance determina-—
tion tests using heat sink hardware. The propellant feed systems provided
the oxidizers as ligquids and the fuels as gases. In the case of diborane
this was significant because it was the first time diborane has been used
in gaseous form in a rocket engine. All tests were highly instrumented and
included measurements of combustor and nozzle wall pressure profiles, and
combustor and nozzle heat flux profiles as well as thrust and flowrate.

Instrumentation was designed for precise specific impulse performance
determination. All critical measurements were redundant and frequently

calibrated.

The specific impulse test results have consistently been able to resolve

performence effects of l-percent magnitude. The difference between OF2
and F2-02(70-30), a 6 1bf-sec/lbm effect, has been clearly evident in the
test results., The relative perfomance of the bell and conical nozzles,

different by only about 2 lbf-sec/lbm, was reproducibly indicated,

Since the primary objective ot the program was to produce experimental
data which can be used directly, the test results have been presented in
two distinctly different weys. The actual observed test data are shown
first without manipulation or adjustment. These data describe the
behavior of an important class of advanced propellants and constitute
the key results of this program. The interpreted performance data, in



the form of thrust chamber efficiencies are shown in a separate section.
These data, when compared to the theoretical models, indicate important
trends and show the present state-of-the-art in performance prediction.
In the remaining sections, the method of obtaining meaningful data from

test measurements and the performance model for data correlation are
presented, and the facility, instrumentation and hardware are described.
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CONCLUSIONS

This program has established the following facts based directly on test

results:

1.

2.

3

4.

A specific impulse of 386 1bf-sec/1bm was produced with
F2—02(82.5—l7.5)/CH4 at a chamber pressure of 100 psia and
an area ratio of 60. This performance level was relatively

insensitive to nozzle contour.

The heat flux measured for F2-02(82.5-l7.5)/CH4 was essen-
tially identical to that measured for F2/H2 and no heat
transfer inhibiting deposit was observed in these short

duration tests.

A specific impulse of 412 1bf-sec/1bm was produced with
OFZ/BZHG at a chamber pressure of 100 psia and an area
ratio of 60. This performance level was relatively insen-

sitive to nozzle contour.

The heat flux measured for 0F2/B2H6 was significantly
higher than that for F2-02/CH4 or F2/H2, approximately
20-percent higher in the combustion chamber and 100-percent
higher in the mnozzle.

The OF2/B2H6 injector remained free of deposits after many
tests and an accumulated duration of 30 seconds. A coating
of B,0O, was observed on the combustion chamber wall and

273
nozzle to an area ratio of 3.

For both CH4 and B2H6,

OF, was higher than that for F2-02(70-30) by an amount that
is in agreement with the newly adopted NBS heat of formation.

the specific impulse produced with
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SECTION I

METHANE TEST RESULTS

The methane test program was designed to establish both the deliverable
performance of F2-02/CH4 and the sensitivity of this performance to
variations in nozzle contour and in oxidizer composition and energy content.
A total of 39 individual test data points was obtained and each of the
objectives was met. Summarized in this section are the specific

impulse results, injector performance, nozzle performance, heat transfer
and hardware condition. Detailed discussion of the performance trends

and comparison with predictions are presented in Section IV.

The deliverable performance of F2-02(82.5-17.5)/GH4 was measured for

the 60:1 area ratio 15-degree cone in eleven tests and for the T0-percent
bell in six tests. The injector performance for this propellant combina-
tion was verified in six tests using a 4:1 area ratio conical nozzle. The
results of these tests were a maximum specific impulse of 386 1bf-sec/1lbm

and injector efficiencies consistently above 97-percent.

The deliverable performance of F2-02(7O—30)/CH4 and OF2/CH4 were examined
in twelve tests. The meximum measured specific impulse was 383 lbf-sec/lbm
for OF, and 376 1bf-sec/lbm for F2-02(70-30) with injector efficiencies
above 97-percent. These results confirm the energy content difference
expected between OF2 and F2-02. A secondary result of the F2—02(70-3O)
testing was an indication of the performance trend with F2 to O2 ratio.

11



Heat transfer levels were measured for the three oxidizers and were gen-
erally similar to those for FZ/HZ' A slight sooty residue was evident with
F2-02(82.5-17.5) but did not appear to affect the heat transfer, By contrast,
the hardware remained clean when the same tests were repeated with F2-02(70-30)
and 0F2.

HIGH AREA RATIO MEASURED SPECIFIC IMPULSE

The experimental specific impulse results for F2—02(82.5—l7.5)/CH4 with
both the bell and conical noz-les are shown in Fig. 2, The theoretical
one-dimensional isentropic chemical equilibrium performance is provided as
a reference on the same figure. The two nozzles generated nearly identical
performance with the bell specific impulse only 1 to 2 1bf-sec/1bm below
that of the 15-degree cone. The peak performasnce is 386 1bf-sec/lbm and
occurs at a mixture ratio of approximately 4.7. The theoretical pesks

at 5.7. The difference is partly caused by the injector efficiency trend
with mixture ratio and partly by nozzle performance effects discussed later
in this section,

A performance test series was conducted with an oxidizer composition of
70-percent fluorine (F2—02(7O-30)) using the conical mozzle. The results

are shown in Fig. 3 compared with the results for F2-02(82.5-l7.5).

The peak value is 376 1lbf-sec/lbm, approximately 10 lbf-sec/1bm lower than
the theoretical optimum 17‘2-0‘2 ratio. This sensitivity to oxidizer composition
is substantially larger than anticipated ; Fig. 4, Although the phenomenon
is not presently understood and a detailed analysis to determine the physical
basis was outside the scope of this program, some possible explanations are

discussed in Section IV.

To verify the heat of formation for 0F2, a test series was conducted under
the same conditions used for F2-02(7O—30), its compositional equivalent.

12
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Specific Impulse, lbe-sec/lbm

440

420 . 7 ~] A

L~ N

1/
400
@
380
-

360

Chamber Pressure = 100 psia

60 70 80 90 100

Percent Fluorine

A. One Dimensional Isentropic Chemical ® Test Data

Bquilibrium Expansion Performance

Figure 4 . Specific Impulse as a Function of Fluorine
Concentration for F,-03/CH, at a Mixture
Ratio of 5 for the %S-degree Cone.
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The results are shown in Fig. 5.  The performance difference, approxi-
mately 7 lbf-sec/lbm, was in agreement with the value predicted using the
Ref. 1 heat of formation. The difference decreased with increasing

mixture ratio, as expected.

INJECTOR PERFORMANCE

The injector efficiencies (defined in Section V) measured in the F2-O2
(82.5-17.5)/CH4 tests are shown in Fig. 6. The results were repro-
ducible between the test series and the efficiency was consistently above
97 percent. A comparison between the injector efficiency calculated from
a étatic pressure measurement corrected to stagnation and the injector
efficiency implied from low area ratio specific impulse is shown in

Fig. 7. These tests were conducted at altitude to mateh exactly the
high arec ratio conditions and to give an accurate thrust measurement.
The agreement between the two methods was excellent, giving added
confidence to the division of efficiencies between injector and nozzle
computed for the high area ratio tests. The fact that the data follow

a 45-degree line indicates that the injector and thrust chamber losses
can be treuted independently. The injector efficiencies for F2-02(7O-30)/
CH, and OFZ/CH4 are shown in Fig. 8 and are gemerally above 99

~ percent, considerably higher than observed with F2-02(82.5-17.5). This °
difference in efficienty is discussed in more detail in Section IV.

16
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THRUST CHAMBER PERFORMANCE

Because of the wide range of propellants, chamber pressures and mixture
ratios tested during the course of the program the injector could not be
optimum for all conditions. However, by the use of gaseous fuel
injection and a combustion chamber L¥* of 30, the injector efficlency for
all the propellants was quite high. However, some of the trends of
measured specific impulse are masked by the variation in injector

efficiency that would probably not be present for point optimized

injectors.

To determine the trends in performance caused by the thrust chamber, the

specific impulse was normalized to one value of injector efficiency,

98-percent, which seemed to be a realistically achievable minimum efficiency
for an optimized injector with uniform mixture ratio.

The normalized specific impulse for F2-02(82,5—17.5)/CH4 is shown in

Figs 9 and 10 as a function of mixture ratio for the 15-degree cone
and the TO-percent bell. The predicted performance was calculated using
the methods described in Section V. The difference between predicted and
measured performance is discussed in Section IV. On a normalized basis,
the specific impulse pezks between 5 and 5.2 mixture ratios. The peak
specific impulse was 385 1bf-sec/lbm for the cone and 384 lbf-sec/lbm for
the bell.

e T T '

The normalized specific impulse for F2—02('7O-30)/CH4 and 0F2/CH 4 is pre-
sented in Fige 11 and 12 for the 15-degree cone. The difference in

performance between OF, and F,-0,(70-30) was again consistent with the new
NBS heat of formation. Also of interest is the variation of normalized
specific impulse with F2 concentration. On a normslized basis the differ=-
ence between F2-02(82.5-17.5) and F2-02(7O-30) was 14 1bf-sec/lbm, Fig. 13.
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Vzcuum Specific Impulse, lbp—sec/lbm
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A. One-dimensional Isentroric Chemical Heuilibrium Fxwusnsion
Performance,

B. Predicted Performance. (7 _  _ 0,98)

Inj

Figure 13 ., Effect of Fluorine Concentration on F -02/CH Specific
Impulse at a Mixture Ratio of 5 with %njectd% Efficiency

Normalized to 98-percent.
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compared to 10 1bf-sec/lbm for the measured values, indicating that
the change in nozzle performance with F2 concentration was very

rapid,

HEAT TRANSFER

In the combustion chamber, the heat transfer rates were comparable to
those for F2/H2. These chamber heat transfer coefficients (Fig. 14)
were considerably higher than predicted by any standard boundary layer
theory., The most likely explanation is that the turbulence in the
chamber near the walls is so high that a continuous boundary layer did
not form. The diborane tests also tend to support this explanation,

In the expansion nozzle, the heat flux values for F2-02/0H4 vere again
gimilar to those for F2/H2 and can be predicted using a boundary layer
starting in the contraction region (Fig. 15 and 16).

HARDWARE CONDITION

Following the F2-02(82.5—17.5)/CH 4 tests, the hardware had a sooty
residue, The injector orifices were clear but the rest of the injector
had a definite film. Following the F2/02(7O—30)/CH4 tests, the hardware

was clean,
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Figure 15, Nozzle Heat Transfer Coefficients for the 15-degree
Cone with F2-02(82.5-17.5)/CH4 at a Chamber Pressure
of 100 psia,

29



Gas-Side Film Coefficient, hg, Btu/inz—sec-oF
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Figure 16, Nozzle Heat Transfer Coefficients for the 70 Percent
Bell Nozzle with F2-02(82.5-17.5)/'CH4 at a Chamber

Pressure of 100 psia,
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SECTION II

DIBORANE TEST RESULTS

The diborane test program was designed to determine the deliverable per-
formance of the 0F2/3236 propellant combination and to give additional
verification of the relative performance of OF, and F2—02(70-30). A total
of 48 diborane tests including six injector verification tests was
conducted to achieve the desired results., The high area ratio

tests included OF,/B,H, with both mozzles, F,=0,(70-30)/B,H, with the bell
nozzle at 100 psia and with the cone at 55 psia. Summarized in this section
are the delivered specific impulse measurements, injector performance, heat

transfer and hardware condition.

The maximm performance levels obtained with diborane were 412 lbf—sec/lbm
for OF, end 407 1bf-sec/lbm for F2-02(70—30). The injector efficiency was
above 97 percent at all mixture ratios. The measured difference between
OF2 and F2-02(7O-30) provided added confirmation of the difference between
the OF, and F,=0,(70-30) heats of formation.

The measured heat transfer levels were significantly higher than those

for F2-02/CH4 or FZ/H2. A thin flaky deposit was left on the thrust
chamber walls tut the injector remained clean.

HIGH AREA RATIO MEASURED SPECIFIC IMPULSE

The specific impulse measured for the bell and cone with OF2/B2H6 is

shown in Fig. 17, The relative insensitivity to nozzle contour was
similar to the F2—02/CH4 results. The peak performance of 412 1bf-sec/1lbm
occurred at a mixture ratio of 4 but was neamrly constant over the range from

35 to 445
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For the bell nozzle, the performance of OF2 is compared with
F2-02(7O-30) in Fig. 18, A comparison of the experimental difference
with the theoretical differemce is also shown., It is clear that the
test data support the revised heat of formation for 0F2.

The test results for F2-02(70-30)/B2H6 in the conical nozzle are shown
in Fig. 19. On these tests there was an indication of a l-percent
anomely in the thrust measurement. Comparison of the data with the
other B2H6 results supports this contention. Although these data are
not precise enough to use for the more subtle comparisons that depend
on data accurate within less than one percent, their quality is still

good enough to provide further confirmation of the deliverable perform-
ance for this propellant.

One test series was conducted for F2—02(7O-3O)/BaH6 with the conicsal
nozzle at a chamber pressure of 55 psia. The specific impulse results are
shown in Fig. 20 indicating a peak value of 396 1lbf-sec/lbm.

INJECTOR PERFORMANCE

The injector efficiencies measured for diborane with OF2 end with
F2—02(70-3O) are shown in Fig. 21, The efficiencies for the two
oxidizers were virtually identical as would be expecied and the efficiency

level was above 97 percent.

The correlation between injector efficiency calculated using static
pressure and throat area and'injector efficiency implied from low area
ratio specific impulse is shown in Fig., 22, The flowrate measurements on
this test series appear to have been about l-percemt high, reducing both
types of efficiencies by the same amount but not affecting the correlation.
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Injector Efficiency from Thrust
Measurement

1.00

0.96

0.92

0.92 0,96 1.00

Injector Ffficlency
from Static Pressure Msasurement

@ Test Data

Figure 22, Comparison of Injector Efficiency Calculated
from Static Pressure with Injector Efficiency
Calculated from Thrust
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ST (1

The sgreement between the two methods is good but the trend is somewhat
different than for methane. Whereas the methane results showed the value
determined from thrust to be slightly lower than the value from pressure,
the diborane showed it higher. No explanation of this effect is available
at this time,

THRUST CHAMBER PERFORMANCE

The diborane thrust chamber performance trends can most easily be

examined by normalizing the performance to one value of injector efficiency.
(This is the same procedure used for the methane data.) The value of 98
percent was again chosen as being a realistic injector efficiency considering

the results of the tests.

The normalized specific impulse for OFZ/BZHe is shown in Fig. 23 and 24 as
a function of mixture ratio for the l5-degree cone and the 70-percent bell.
The predicted performance was calculated using the methods described in
Section V. The discrepancy between predicted and measured performance is
discussed in Section IV. On a normalized basis, the specific impulse
maximized near mixture ratio 4 with a maximm value of 413 lbf-sec/lbm for
the cone and 412 lbf-sec/lbm for the bell.

The normalized specific impulse for F2—O2(7O—30)/B2H6 is shown in Fig. 25
for the 7O-percent bell nozzle. The difference between OF, and F2-02(7O-30)
on a normalized basis, 7 lbf-sec/lbm, is again consistent with the new NBS
heat of formation. Also of interest is the variation of performance with
chamber pressure. The normalized specific impulse for the 55 psia test
series is shown in Fig. 26, The data scatter is somewhat larger than

for the 100 psia tests because the instruments were not operating in their

optimum range. However, the scatter is still well within ¥ l-percent.
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HEAT TRANSFER

The heat transfer rates for diborane were conside;ably higher than those
observed for the other propellants., In the combustion chamber, the heat
transfer rates were about 20.percent higher than those for F2-02/CH y
Fig., 27. In the nozzle (Fig. 28 and 29) the rates were about 100 percent
higher than those measured for F2-02/CH4. Variations with mixture ratio
(Fig. 29) and pressure (Fig. 30) were also investigated. No detectable
difference was observed between OF2 and F2-02 (70-30).

HARDWARE CONDITION

Following the diborane tests there was a flaky deposit on part of the
internal surface of the thrust chamber. However, the deposit was light
and did not appear on the injector.

The major constituent of the exhaust of OFZ/BZH6 is the unstable compound
BOF., When this compound comes in contact with & cool surface ( < 1000 F)
203 and gaseous BF3. The B203 is left behind as a
deposit. In other test programs this deposit has been observed on both the

it decomposes to solid B

injector and combustion chamber walls and has sometimes been so severe as to
cause major problems, e.g. Ref. 2. However, in this program, the deposit
was found only on the chamber walls and appears to be flaky in nature as
shown in Fig. 31. There was nearly a total absence of deposit on the
injector face. This may have been due to the gas injection. This injector
pattern produces very little spray back to the injector face since droplets
are entrained in the high velocity gas stream. Whatever the reason, tests
have been conducted with both oxidizer-and fuel-rich cutoffs and in no

case was deposition observed,
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The deposit in the throat area appears more persistent, as seen in Fig. 32,
In the nozzle, the deposition gradually reduced until, at about an area
ratio of 3, it disappeared. The remainder of the nozzle, to an area ratio

of 60 was totally free of deposits.

50



[ 6 1

Figure 32. Nozzle Region Deposition for F2-02(7O-30)/ BZH6
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SECTION III

INTERPRETATION OF PHASE I TEST DATA FOR FLUORINE-HYDROGEN

In Phase I of this program an extensive test program was conducted with
fluorine/hydrogen. Nozzle performance was examined for a wide variety
of nozzle contours, area ratios, chamber pressures and mixture ratios.
The results are documented in Refs. 3, 4 and 5. As a result of the
continued studies and experimentation in Phase I1I, some changes in the

interpretation of the original data are recommended.

For Phase II, the test program was moved to a new test position designed
expressly for this project and a significantly improved oxidizer flow measure-
ment capability was introduced. A series of F2/H2 tests was conducted to
assure consistency between the results for the two test stands. Thrust
chamber efficiency of the ssme engine hardware tested on the two stands

was compared and seen to be in agreement (Section IV). The improved oxi-
dizer flow measurement gave a small difference in flowrate. This caused

a difference in the determined specific impulse and characteristic velocity

values,

Because the new flow measurements are superior it is recommended that the
original F2/H2 data now be interpreted for specific impulse by combining
the thrust chamber efficiencies obtained in Phase I with the injector
efficiencies obtained from the Fz/H2 tests on the new test stand in Phase
II., The recommended injector efficiency curve is shown in Fig. 33 of this
volume. The Phase I thrust chamber efficiencies are included in Section IV.

For comparison with the normalized F2—02/CH4 and 0F2/BZH6 results shown in
Sections I and II of this report, Figs. 34 and 35 display F2/H2 specific
impulse data at 100 psia with the two nozzles used in Phase II. These
figures were obtained by combining the thrust chamber efficiency results for
the cone and bell in Figs. 61 and 64 with an injector efficiency value of
98-percent.
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SECTION IV

DATA INTERPRETATION

In the preceding sections the test results have been described as they were
obtained. In this section the performance date are described in relation
to all other data measurements and to the theoretical predictions. The
primary objectives of these comperisons are to ensure the accuracy and
consistency of the test data and to indicate areas in which the analytical
models need improvement. Since this program involved a relatively limited
number of tests such comparisons help to eliminate random errors and prevent
the possibility of systematic errors. This careful scrutiny of the data is
made possible by the wide variety of measurements taken. In addition to the
basic measurements of thrust and flowrate, a complete wall pressure profile
is taken from the injector to the nozzle exit. Heat transfer is measured
over the same range. At times, even injector pressure droprs have been used
to substantiate flowrates., These various data are essentially independent
and can thus be used to provide substentiation of the basic measurements.

To aid in the interpretation of the data, the specific impulse losses are

separated into the loss related to the injector and that related to the
thrust chamber as described in Section V.

F2-02/CH , A0 0F2 /CH ,

The great variety of tests conducted with CH4 end the three oxidizers
F2-02(82.5-l7.5). F2—02(7O-30), and OF2 makes possible an extensive compari-
son of theoretical and experimental performance results. The primary

objective of this comperison is the assursnce of high quality data.
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Injector Efficiency

Data of several types tend to suppart the validity of the injector effi-
ciency determinations for all three oxidizers. The low area ratio injec-
tor verification tests produced good agreement between the two methods of
determining injector efficiency, Fig. 7. The thrust based method, which
is virtually independent of errors in either chamber pressure or throat
area, correlated the method based upon chamber pressure and throeat area.
Further, the corrections from combustion chamber wall pressure to chamber
stagnation pressure were carefully checked by the independent method of
full scale cold flow tests, Page 107. The data were repeatable from test
to test and showed consistent mixture ratio trends. 41l values were
below 100-percent, assymptotic to 100-percent at low mixture ratio for
F2-02(82.5—17.5) and between 99 and 100-percent for F2-02('7O-30) and OF,,.
For both F2-02(70-30) and OF2 the injector efficiency was 1 to 2 percent
higher than for F2—02(82.5-l7.5) at high mixture ratics. This difference
is qualitatively supported by comparison of the combustion chamber pressure
profiles for the different oxidizers, Fig. 36. It is seen that for OF2

and F2—02(7O—30), vhich have the same chemical composition, the initial
presgure decay is more rapid, indicating a more rapid energy release.

The fact that the pressure rise near the contraction zone from the cold
flow tests was nearly the same as the rise observed for all three oxidizers
(Fig. 74) makes it unlikely that significant combustion was continuing

in this region.

Although it is not evident why the difference in oxidizer composition
should have an effect on injector performance efficiency, the data are

consistent and the possibility of a real effect should not be neglected.
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Some potential ceuses might be the atomization and vaporization efficiency
of the injector, the shape of the theoretical C¥* vs mixture ratio curve
(Appendix B) » Or a chemical kinetic effect caused by the higher oxygen

(or lower fluorine) concentration, An explanation based on atomization or
vaporization is unlikely, The OF, is more dense and the F2-02(7O-30) less
dense than F2—02(82.5—17.5) meking velocity an improbable cause. Further,
the difference in critical parameters of OF2 and F2—02(7O—30) is large and,
on that basis, F,-0,(70-30) would be expected to resemble F,-0,(82.5-17.5)
more theri it does OF2. The other two explanations are plausible, but
insufficient information is available to meke a judgment.

Thrust Chamber Efficiency

The two significant trernds observed in thrust chamber efficiency for
methane are that the values for F2-02(82.5-l7.5) (Fig. 37 and 38 ) are
substantially higher than predicted and that the dependence on F2-02

concentration is maxch larger than predicted.

Substantiating the high values of thrust for F2-02(82.5-l7.5) are the
nozzle wall pressure measurements shown in Figs. 39 through 42 These
pressures were csistently higher than predicted in the high area ratio
region but near the predicted values in the throat region. (The latter
supports the good correlation of injector efficiencies shown in Fig. 7 )
The cause of the unexpectedly high performance is not clear. The good
injector efficiency correlation mekes it most likely the cause is either a

wall effect or a core effect occurring in the nozzle.

Examining the wall effects, the heat transfer data (Figs. 14 through 16)
were predicted by the boundary layer theory with some accuracy and the
magnitude of the boundary layer loss is neither large enough nor sensitive

enough to nozzle contour, mixture ratio or fluorine concentration for an
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error in this loss to account for the observed performance effects.
Therefore, the mainstream performance is probably the erea in which unex-

pected trends occur.

The areas af fecting mainstream performmance are the aerodynamic losses, the
chemical kinetic losses and basic theoretical performance data. The

equilibrium reactions involved in the system are well known so the theoret-
ical performance is probably accurate. The aerodynsmic loss is a very weak

function of the parameters for which unexpected trends were observed.

The loss mechanism that is least understood is the chemical kinetic process.

This loss is of sufficient magnitude and varies rapidly enough with the
major test parameters to account for all the observed performance trends.
There are several possible physical mechen’sms related to the chemical
kinetic loss which could account for the observed performance trends.

As shown in Fig. 43 , carbon is formed in the combustion chamber at
mixture ratios below 5.5. At mixture rmtios below 5.7 solid carbon could
theoretically condense in the nozzle. No exact kinetic or approximate
method is available that realistically includes a condensing solid and the
extension of the existing methods to include this effect could not be

considered in this program.

Other exhaust products that appear at mixture ratios below 5.7 could con-
ceivably be inwlved in the discrepancy. The reactions involving CO and
002 are not completely understood and other elements such as CH, 02H, 02H2,
CF, CZ’ C2F, CF2 and 03

additional recombination paths involving these elements that are not

msy not be completely characterized. There may be
generzslly known or discussed in the literature. Intermediate, unstable

compounds not indicated in the equilibrium model could also enter into the

chemical kinetics. For exemple, adding the conceptually possible reactions
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H+CO+ M—CHO + M, F+CO + M —CFO + I, H2 + M —-CHZO (formaldehyde)
+ Mand HF 4+ CO + M ——CHFO (Formyl fluoride) + M could increase the kinetic

efficiency enough to correlate the data.

The strong trend of thrust chamber performance with oxidizer composition is
shown by the efficiencies for OF, and F2—O2(7O—30), Fig. 44 and 45. For this
F2 to O2 ratio, the results were below the prediction, in marked contrast to
the results for F2-02(82.5-17.5). The predicted curves shown in Fig. 44

are for F2-02(7O—30) to mske the figure less complex. Actually the OF2
efficiency was predicted to be about O.3-percent lower than F2—02(7O-3O) as
shown in Fig. E2 of Appendix E.

The fact that the strong trend in thrust chamber efficiency was coupled
with a slight opposite trend in injector efficiemcy could indicate a
problem in assigning these efficiencies and therefore in throat area or
chamber pressure. However, there is sufficient corroborative data to
indicate that the trend is real. Among the corroborative data are the

trends in wall pressure.

The nozzle wall pressure curves for 0F2 and F2—02(7O-30) are showvn in Fig.
46 through 49 where the data are seen to be closer to the predictions
than were the data for F2-02(82.5-17.5). These data provide additional
confirmation of strong dependence of thrust chamber performance upon F2
to O2 ratio and indirectly also support the high injector efficiency for
F,=0,,(70-30).

F2-02/32H6 AID 0F2/B2H6

As with methane, the wealth of data available from the diborane tests

makes a thorough scrutiny of the performance results possible. This
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Ratio of Wall Pressure to Chamber Pressure

1.00

0.50

0.20

0.10

0.05

0.02

0.01

0.005

0.002

0.001

1 2 5 10 20 50 100
Local Area Ratio

Figure 46, Effect of Area Ratio on Nozzle Wall
Pressure Correlation for OF./CH, and
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scrutiny ensures that the data are internally consistent and may be used
in calibrating analytical techniques and physical models.

Injector Efficiency

For the BZHS’ the injector efficiency and 211 the supporting date are
consistent, The OF2 and F2-O2(7O—30) values were the same, the low area
ratio injector correlation tests showed good agreement and the cold flow

tests correlated the hot firing combustion chamber pressure profile
(Fig. 74 ).

Thrust Chamber Efficiency

The most significant trend in thrust chamber efficiency for diborane was
that the values weresubstantially higher than predicted, Figs. 50 through
52, The trend of performance with both mixture ratio and pressure was
essentially as predicted. Both OF2 and F2-02(7O-30) are shown on the same
figure with only one predicted curve and it is seen that the 0F2 efficien-
cies are slightly higher. As shown in Fig. E5 of Appendix E, this
slight difference between the two oxidizers was expected. As also pre-

dicted, this is opposite to the effect observed for methane.

The high thrust chamber efficiency values are supported by high nozzle

wall pressures, Figs. 53 through 56, as was the case for F2-O2/CH4.

As seen below tests with F2/H2, for which the thrust chamber efficiency
predictions were accurate, produced good wall pressure correlations. The
extremely high heat transfer rates, usually indicetive of high boundary layer
losses would appear to contradict the high efficiencies except that the

heat transfer is probably related to the deposition phenomenon. This
condition creates a boundary layer process not amenable to analysis by

currently aveilable procedures.
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Ratio of Wall Pressure to Chamber Pressure
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The dominan: presence of boron and its compounds in the exhasust makes it
unlikely that the predictions of kinetic efficiency are accurate. Nei ther
the mechanisms nor the rates for the boron related resctions are completely

characterized.,

One unusual trend, the increasing efficiency as mixture ratio increases,
was predicted by the Kinetic model. This varistion is opposite to that

observed for }?2—02/01{4 ang F2/H.2 and there was some question as to its
validity. However, the test data confirm the variation. The rezsons for -

this reverse mixture ratio trend may be the increasing concentrations of

the reaction promoting third bodies HF and H, Fig. 57. The concentra-

tions of these species are nearly constant for F2/H2 and F2~02(CH4), Fig.
58 armd 59.

F,/H,

The thrust chamber efficiencies for F2/H2 are shown in Figs. 60  through
T1. The agreement between predicted and measured values is excellent.

The selected rate constants matched the datz over a wide range of pressures,
mixture ratios and nozzle contours. With F2/H2, for which thrust chamber
efficiency was predictable nozzle wall pressures were also predictable as
seen for example in Fig. 72. A more comprehensive presentation of the
F,/H, data is in Ref. 4,

The experimental efficiencies shown in Ref. 4 are slightly different

from those shown here because of the change in stagnation pressure interpre-
tation. The predicted curves also are different because of a change in
boundary layer calculation procedure. These changes are detailed in Section
V. The resul t of the changes was to bring the theory and data into
better agreemant. In particular, the relative performance of the bell and
cone, previously & problem area, was resolved by the new boundary layer

approach.
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Figure 72, Effect of Area Ratio on Nozzle Wall Pressure
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As shown in Pige 64, the thrust chember efficiency data from the facility
activation tests were comsistent with the date teken during Phase I. This
consistency means that data from the two different test stands can be

compared directly.
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SECTION V

DATA INTERPRETATION PROCEDURES

Three terms are used in this report to describe the performance of the
test engines. Specific impulse is defined as thrust divided by flowrate,
corrected to vacuum conditions. For indication of loss modes and for
prediction purposes, an injector efficiency including all losses caused

by the nonideal propellant injector, and a thrust chamber efficiency

DI UERAR T 0T 0 o i O i

including all losses caused by the nonideal combustion chamber and
expansion nozzle are defined. The injector efficiency is the value of
characteristic velocity efficiency that would have been achieved if the
combustion chamber had been insulated end frictionless. The thrust
chamber efficiency includes the thrust coefficient efficiency and the
Joss to characteristic velocity efficiency caused by the combustion

b chamber.

Each of the parameters used to describe the perfommance is calculated

from test data. The specific impulse end thrust chember efficiency are
also predicted analytically. Although the manner of division of losses
between injector and thrust chamber efficiencies is a matter of definition,

the ecritical consideration is thet the definitions based on test data and

i

i

theory be rigorously consistent. This section contains brief descriptions

of the procedures used to develop these performance parameters both from

test results and from theoretical analysise.

1

PERFORMANCE DATA

Wb

To ensure the high reliability of the data required to determine the small
- performance differences expected on this program, the observable test

parameters were corrected for all known effects in determining engineering

lil
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test data, Two areas in which major improvements in data reduction were
made for this phase of the contract are throat stagnation pressure and
fuel flowrate,

The manner of recording, averaging and converting the digitsl data to
give engineering values of each parameter is straightforward and will not
be discussed. The details of converting the measured engineering param-—
etérs to performsnce parameters are of interest in that failure to account
for some effects such as nozzle throat size variation with temperature can

make a significant difference in the calculated efficiencies.

Performance Calculation

The three performance parameters of interest are specific impulse, injec-
tor efficiency and thrust chamber efficiency.

The specific impulse is calculated as
F

vacuum

5 -
WTotOl

and is corrected only for exact propellant composition. For some compari-
sons, a normalized Is is used as described later, however, this fact is

always recorded on the figures. The injector efficiency is

= *P‘:A.g + (1—77"“_ )
C*

. "
0 ¢ ldea|  total

and the thrust chamber efficiency is

n - _Fuacoom (q- 7
P *c HL *
e CA FIdEaf c
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The injector efficiency for Jow-area-ratio tests is also calculated from
thrust as

IS

77%; ) ISLdea| {?ch" (,_?HLC*)] + (l—%l‘d)

For this calculation, neither Pc nor A* needs to be known. However, the

low area ratio thrust chamber efficiency prediction must be accurzte.

Thrust Data

The vacuum thrust is calculated by avereging the four thrust measurements

and correcting for ambient pressure by:

= A
Fva.cuum Fa.vera.ée + Pa. e

Because all tests were conducted at low environmental pressure, the

correction term was small (2 0 3 percent) compared to the total; therefore,

small errors for base effects or small errors in pressure or area are
negligible. No other corrections are necessary because the test stand
design and calibrating procedures are such that corrections for external

loads on the engine are eliminated.

Flowrate Data

The gaseous fuel flowrate is meesured using a venturi with choked flow.
The liquid oxidizer flowrate is measured using turbine flowmeters in
series. The dats teken for the venturi are the pressure and temperature
in the upstream portion of the venturi. For the flowmeters; pressure,
temperzture and rotational frequency are recorded. The relative flowmeter
agreement throughout the program has been approximately O.1 percent.
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The fuel flow for choked conditions can be calculated kmowing only the
pressure and temperature at the entrance to the venturi. For hydrogen,

the perfect gas law was used to calculate the thermodynamic properties
during expansion. DMethane and diborane are much closer to their critical

points at the nominal temperatures used for testing than is hydrogen;
and for these gases, compressibility effects had to be considered.

A real gas venturi anslysis procedure was developed and used for both CH4
and B2H6' The development of the analytical Procedure is described in
Appendix D,

The oxidizer flowrate is faund from the liquid pressure and temperature,
and rotational frequency of the flowmeter. The density and viscosity of
the liquid oxidizer are found from the pressure and tempereture. The
rotational frequency is converted to a Reynolds mumber function by dividing
the frequency by the kinematic viscosity. The conversion from corrected
frequercy to gallons is fourd from the flowmeter calibration curve. This
value is finally corrected for flowmeter shrinkage from the calibration

temperature to the oxidizer temperature.

Throat Area

The physical throat area is measured before and after each test series.
Because the hardware increases in temperature contimiously during a test
series, a correction must be applied to account for hsrdwere throat growth
prior to each test, Thic pretest throat area (At) is then corrected for
eerodynamic and boundery layer discharge coefficients and throat shrinkage
during the test to give the actual available flow ares (A*).
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Chamber Pressure

The chamber pressure (throat stagnation pressure) is calculated from the
wall static pressure measured prior to start of contraction but after all
ma jor combustion has tzken place. The wzll static pressure is corrected
empirically to the core static pressure. The core static pressure

is then corrected to a throat stagnation pressure using the relationship
n

-t
n-l\ 2
o= Fetatic [' + —5 M]

where the n used is a process exponent for the equilibrium expansion
and not the localspecific heat ratio.

The combustion chamber which is heavily instrumented for an examination

of the complete pressure profile indicated a pressure rise just prior to

start of contrzction ceused by aerodynamic effects. The combustion chamber

geometry is shown in Fig. 75 with the position of the pressure taps. The
full waell pressure profile is recorded on each hot firing test and is
surmarized for each of the major propellant combinations in Fig. 74.

Full-scele tests using (}N2 at a pressure of 100 psia were performed. The
results of the GN2 flow tests are also shown in Fig. 74. The pressure
increase immediately upstream of the start of contraction is again
evident. These results are particularly significant because there are
no combustion or injector pattern effects and the hsrdware is the same as
the hot firing hardware so there are no scale or instrumentation

discrepancies,

Other checks on the validity of the pressure corrections were made by
re-examination of the cold-flow tests of subscale hardware performed in
Phase I and by use of a simplified electric analogy. The results of the
subscale cold-flow tests confim the full scale data. Results of the
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electric analogy are indicated in Fige 75, which gives a quelitative
indication of the region where the turning effect is felt by the decrease
in the potential velocity neer the wall.

Corrections for F,-O, Concentration and Impurities

All currently svailable propellants have some minor amounts of impurities.
Because of the desired precision and following the philosophy of accounting
for all calculable effects, analytical corrections for these impurities

were made.

The areas affected by the impurities are the flowrastes and the combustion
and expansion processes. The flowrates are adjusted by taking into
account the actusl densities. The combustion and expeansion processes are
corrected by ratioing the equilibrium performance for the desired pro-

pellant. That is

=1 +(I -1 )

I =
Scorrected  “measured ®ideal pure Sideal impure

with similar expressions for C* and CF'

The propellant compositions are given in Table 2 and 3 for the
various test series, F2-02 composition varies slightly from series to
gseries because of frequent tank venting and composition trimming.

Nominalization of Parameters

For purposes of comparison and for extrapolation, 1t is desirable to
nominslize parameters to an exact chamber pressure or mixture ratio or
injector efficiency. The basic assumption made in performing this
nominalization is that the injector efficiency does not vary for small
changes in mixture ratio and pressure and that the slope of the predicted
thrust chamber efficiency is valid for small variations in pressure and
mixture ratio. In addition when the specific impulse is nominalized to
one injector efficiency, the assumption is made that the division of
losses between injector and thrust chamber is accurate.
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The relationships used 1n the nominalization for pressure and mixture ratio are

: =1 I 7 '|
®nominal Sdelivered ®ideal nominal Tcpredict_gd noninal
I

I

Sideal TCoredic ted

and for injector efficiency is

/N -1 7, .
. . InS . ominel [ H.L.C.

S S
7ing  Pominal Nins [1°77H.L.C.*]

HEAT TRANSFER DATA

Heat transfer data were taken using thermal isolation sections as described
in Section VI, The resultant data were in the form of temperature-time
histories. When nondimensionalized, these histories were compared with
results of a one dimensional transient heat conduction model to establish
the film coefficients.

The theoretical, non~dimensional, back side wall temperature-time histories
wereobtained from a transient hest conduction analysis assuming en infinite
plate solution with one surface exposed to the combustion gas and the other
surface insulated. The assumption of the infinite plate (one-dimensional
conduc tion) is reasorable because of the insulating effect of the air and/or
347 steinless steel that surrounds the messuring plug. Small corrections
are made for the true geometry of the plugs where necessary to reduce the
test data to infinite plate fom,

The following equation was solved to obtein the backwall temperature as a
function of time:

®
sin A A “(a AP
A
_A_'L_fia=22 i e i Fcos(A 4 X)
Tty n-1 Apd +sin )‘n’t cos 4 0 n™ A4

114

[ AN

1911 RymYY P



where

(A d)/Bi=cot (A 1)

and A{ is the wall thickness, A n is the nth eigenvalue., This equation
defines the values of A n for each term in the infinite series shown

above. The controlling dimensionless parameters are seen to bes

Fraction of wall thickness, f

Biot number = Bi = hd (h is film coefficient and k is
k thermal conductivity)

Fourier mumber = F_ = __ 0 & ( & is thermal diffusivity)
/[2
The solution has been programmed for the IBM 360 digital computer. An
example of the solution is shown in Fig. 76 where the curves are for

parzmetric values of film coefficient.

The pertinent mezsured test data include:
1) Initial segment temperature
2) Segment thickness
3) Backwall temperzture-time history
The adiabatic wall temperature was celculated from the following

equation:

l +N 1/3 7-1 MZ
Pr

=T 2

1+,,7_' M2

2

A typical temperuture-time history for a nozzle probe location is shown in
Fig. 77. For each temperature location, the ratio (TAw-Tw)/(TAw-Ti) was
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computed for different time slices and these values, corrected for three-
dimensional effects, were superimposed on the theoretical curves, Fig. 76.

The resultant gas-side film coefficient was read directly from the plot.

PERFORMANCE PREDICTION

The performance prediction procedure used is basically similar to that
used in Phase I (Ref. 4 ). Modifications have been made in the treat-
ment of the boundary layer loss and heat loss. The basic ideal performance
is the one dimensional isentroric chemical equilibrium expansion with the
propellants at the injection temperatures. This performance is used to
define all efficiencies end losses. Losses from this ideal performance
and interactions of these losses are calculated analytically except for
injector effects.

The losses considered in the performance prediction are given in Fig. 78.

Efficiencies are defined as:

loss
7 =1 - Zeference value

The predicted thrust chamber efficiency is calculated as:

D=1~ (l'vc)'(l'vx) - (1"’7BL)"(1'77&LI)

8

The predicted specific impulse is given by
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or

I, = I‘_,,Idea_1 [77Tc + ( - nHLC,]] [nlna' ~(l- nHLC*)]

The injector efficiency can be assumed, measured on low area ratio tests
or calculated from static pressure on the high area ratio tests. The C¥
heat loss efficiencies are given in Appendix E , the ideal performance

can be found in Appendix B.

Aerodynsmic Analysis

The nozzle flow field is calculated by the method of characteristics,

which has proven accurate both in cold flow and in hot firing tests.

In the trensonic region the method of characteristics cannot be employed.
Therefore, the flow field in this region is computed by a series expansion
of the equations of flow for Mach numbers near unit. The Rocketdyne
trensonic analysis has been verified using cold flow test data and is quite

accurate.

In the celculetional procedure, the gas state properties are input as a
mumerical table for a gas flow that is reacting. The chemical equilibrium

properties of the propellants are used, since the flow for the parameters
of interest 1s most closely approximated by the equilibrium gas properties.

The aerodynemic calculations result in a geometric efficiency, 77(}’ which
is a measure of the loss caused by the nomuniform divergent flow in the

nozzle.

Bourdary Layer Analysis and Mainstream Heat loss

The concept of a thin continuous boundary layer is useful for flow having
small mainstream turbulence. However, there is evidence that in the combus-
tion region of rocket thmst chambers, large-scale turbulence may occur,
preventing the development of a boundary layer early in the chamber.
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The starting point of boundary layer growth for such thrust chambers mist

bte determined experimentelly from heat transfer datae.

The point in the flow at which the boundary ljyer calculation is begun is
2/3

determined by examining the parameter S‘c(Pr) as derived from heat
transfer data. This parameter decreases continuously after the boundary
layer has formed. For the combustion chambers tested in this program the

boundary layer method became valid at the start of contraction.

For analysis, the thrust chamber well was divided into two regions: the
region between the injector and the point where boundary layer attachment
occurs, and the region between this point and the nozzle exits The region
prior to boundary layer initiation is marked by the presence of violent
turbulence. In this region, it is assumed that the heat trensferred to the
thrust chamber wall is lost uniformly by all the ges; a molecule that
transfers heat to the wall may reach the center of the flow field or by a
series of collisions receive some energy from the gas in the center of the
flow field. The reaction rates are high in this ares and stay time is longs
thus it cen be deduced that the gas composition will achieve the equilibrium
associated with the reduced energy level. The gas will then proceed through
the remaining length of the thrust chember as though the lost heat had never
been present. Therefore, in relation to the potentiel performance at the
injector conditions, a heat loss has occurred. This heat loss is defined as
the difference in the equilibrium specific impulse values at the two energy

levels divided by the value used for reference.

Once the boundary layer calculation is initiated, the heet transferred to
the wall is lost entirely from the boundary lzyer. Cross diffusion,
conduction and radiation between boundary leyer and core gas are assumed %o
be negligible. The corc gas proceeds through the nozzle without further
loss of heat. As the heat is lost, the boundary layer grows to include ean
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increasing portion of the total flow; but for any boundary lsyer thickness,
the portion of the mass outside the boundary lsyer hes lost no heat or it
would become part of the boundary layer. The loss modes of heat transfer
and shear both occur exclusively in the boundary layer once a well-
defined boundary layer has begun to exist. The boundary-layer analysis
accounts for these shear and heat transfer losses and the interrelations
between them.

In the Rocketdyne boundary layer approach a finite difference solution of
the integral momentum equations is used that includes terms to account
for the effects of a pressure gradient, a compressible shape factor, a
nonadiabatic wall condition, compressible flow condition, and a verisble,
turbulent boundery layer velocity profile. The von Karman integral momen—
tum equation is used in the computations which arevelid for both lsminar
and turbulent boundary layer conditions.

Using the potential flow conditions (velocity, density and temperature)
determined from the inviscid axisymmetric flow analysis to define
conditions at the outer edge of the boundary layer, the finite difference
solution is pursued from the boundary layer starting point along the entire
length of the wall. This solution finally results in & momentum thickness
at the nozzle exit. When converted to a momentum deficit and corrected by
the cosine of the wall angle at the exit, this calculation produces the
loss in thrust resulting from the boundary layer. The loss in thrust is

given by
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Two efficiencies are derived from the painstream heat loss and boundary
layer analysis; the mainstresm heet loss efficiency, defined as

I -1
Sideal SHeat Loss

1
I Sideal

(where Ig is calculated for equilibrium one-dimensional isen-
Heat Loss

tropic flow at the reduced energy level). Also, the effect upon c* is
given as

% - *
¢ ideal ¢ Heat Loss

b *
77‘{Lc* C¥ideal

The boundary layer loss is given by

I
s
1 Boundary Layer
Tg =1 I
Ideal

Reaction Kinetic Anslysis

The calculation of reaction kinetic effects in the nozzle is performed by
dividing the nozzle flow into a large number of streamtubes derived from
the aerodynamic analysis. The one-dimensional reaction kinetic analysis
is then applied to the flow in each streamtube. The reaction kinetic loss
for the nozzle is calculated by integrating the impulse function across the
streamtubes at the nozzle exit for both equilibrium flow and for flow
calculated using the kinetic model. Rate constants are tabulated in

Table 4, Details of the procedure are described in Ref. 4.
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TABLE 4 REACTION RATE CONSTANTS

Reaction Rate Constant wit
Argon as Third Body

h

o O oo

+ H + Ar
+ OH + A
+ 0 + Ar
+ 0 + Ar
+ F + Ar

+ F &+ Ar

= Ha + AR 106
r = HZO + Ar 4.5
= OH + Ar 6.0
= O2 + Ar 2.0
= HF + Ar k.0
- F2 + AI‘ 8.0

X

x 10
x 10

X

1018
1019

18
1018
1012

Third Body Efficiencies
Relative to Argon

OH
H2

HF
H,O

Cco
co

All other species 1
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WALL PRESSURE PkREDICTION

The wall pressure profile is detemined by predicting the pressure as a
function of position in the wall streamtube. Once the transition from
shifting to frozen in this streamtube is caleulated using the Reaction
Kinetic Analysis Program, the wall pressure profile is completely
determined.

The relationship between the streamtube area ratio and the nozzle axial
length is known from aerodynamic and streamline analysis. The relation-
ship between streamtube area ratio and local geometric area ratio is
shown in Fig. 79. Using the curves of streamtube area ratio vs local
geometric area ratio and the wall pressure ratio vs streamtube area ratio

data, the curves of wall pressure vs local nozzle area ratio are obtained,
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Local Area Ratio

Wall Streamtube Area Ratlo as a Function of Local
Geometric Ares Ratio,

126

60

80 100

[



il

SECTION VI

TEST APPARATUS AND PROCEDURES

The apparatus and procedures used to conduct the experimental portion of
the program are described in this section. The test facility and
instrumentation are discussed at length because of the unusual features
of the fuel feed systems and the emphasis on high quality test data.

The hardware, identical to that used in Phase I, is described only

briefly. More details are available in Refs. 3 and 4.

The test program was conducted at the Rocketdyne Nevada Field Laboratory
Altitude simulation facility B-3 test stand shown in Fig. 80. This
facility produces a simulated altitude of 120,000 feet. The propellant
feed systems provide the oxidizer as a liquid under liquid nitrogen
controlled conditions and the fuels as a gas under conditions established
by heat exchangers. The diborane is stored in a liquid condition and

converted to a gas for each test.

Instrumentation is designed for precise specific impulse performance
determination. Data acquisition is by digital recorder. The specific
impulse test results have consistently been able to resolve performance
effects of l-percent magnitude. The difference between OF2 and F2—O2
(70-30), a b lbf-sec/lbm effect has been clearly evident in the test
results. The relative performance of the bell and conical nozzles,

different by only about 2 lbf-sec/lbm, was reproducibly indicated.
A1l engine hardware was of heat sink design intended for short duration

tests. The combustion chamber was fabricated of heavy wall copper and was of

two-piece construction: a cylindrical section and thrcat section.
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The stainless steel nozzle extensions used werea 15-degree cone and a
70-percent bell, each of area ratio 60. The copper injector was

designed for liquid oxidizers and gaseous fuels.

PROPELLANT SYSTENMS

The test stand had essentially three separate propellant feed systems:
an oxidizer system and two fuel syé%éﬁs, one system for methane, and

one system for diborane. The need for separate fuel systems stemed from

the unigue characteristics of diborene.

Oxidizer Feed System

The oxidizer feed and storoge system is designed for use with any
fluorinated cryogenic oxidizer. The storage-test tank is a triple-walled
500-gallon stainless steel tank having a liquid nitrogen inner jacket and
an insulation~filled vacuum outer jacket. The tank is shown in Fig. 81
next to the LN2 tank.

The liquid oxidizer system is liquid nitrogen-jacketed and insulated

from the test tank to the main valve just upstream of the engine, Fig. 82.
The flowmeters are within 4 feet of the injector and measure representa-—
tive flow conditions at a specific data slice. Just downstream of the
main valve in the oxidizer system, a liquid nitrogen bleed is connected

for chilling the injector assembly prior to engine start.
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The stand includes provisions for making and analyzing 1?'2—02 mixtures

on site. The mixture is produced by introducing gaseous oxygen into the
bottom of the LF2 tank end allowing it to babble through and condense in
the LF2. Additional mixing is accomplished by cycling the liquid through
the feed lines and return system and by tubbling helium gas through the
propellant in the tank,.

An oxygen analyzer, Fig. 81, was used in monitoring the LF2 concentra=-
tion in the tank. The gas analysis is based upon a measurement of the
magnetic susceptibility of the gas that is being analyzed. More precise
analysis of the concentration is made by laboratory analysis.

During the OFZ/CH4 portion of the program an ignition system was
installed in the oxidizer system because hypergolicity is considered
unreliable for this propellant. The modification consisted of the
installation of a high pressure fluorine bottle and associated plumbing.
Gaseous fluorine wasintroduced through the oxidizer system 250 msec
before the methane. When the oxidizer main valve reached full open,

the gaseous fluorine main valve wasclosed. GF2 injection waslimited to
0.5 seconds. This ignition systewm worked reliably throughout the test
series. No attempt was made to conduct OF2/CH4 tests without using the
ignition system.,

Fuel Feed System

For the methane feed system, K bottles at 2250 psi were manifolded
together., This gaseous bottle bank, illustrated in Fig. 83, was
connected to the propellant feed line.

The diborane feed system was designed for liguid diborane storage

and gaseous diborane injection. The use of gaseous diborane was
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necessitated by the requirement of comparing the three fuels, H2, CH4 and
B2H6' under the same operating comditions. Gaseous fuels ensure high
combustion efficiency for all propellant combinations and eliminated the
need for injector development. The required phase change and heating

resulted in a unique feed system design approach.

The recuired quantity of liquid diborane is converted to a gas before the
test but cannot be held at the optimum test temperature of 140 degrees F
for long periods of time because of the high decomposition rate at this
temperature (lower temperatures bring the gas too close to a two-phase
regime as it expands through the flow measurement sonic venturi). There=-
fore, a two-stage heat exchanger was devised. The first stage maintains
the gas at approximately 70 degrees F-where long delays in the test can
be tolerated with no danger of decomposition , (Appendix C )e The
second stage is used immediately before the test and raises the temperature
to the desired 140 degrees. The second-stage heat exchanger was also used
to regulate the fuel temperature on H2 and CH4 tests.

The liquid storage tank (Fig. 83 ) consists of three tubes inside an
anmilar container which is used as an LN2 jacket. The LN2 flow is
regulated to control the B2H6 storage temperature. This type of system

is more flexible than the simpler dry-ice system sometimes used. Its
extra cooling capacity was essential to the diborane recovery operation
performed after each test, during which unused gaseous diborane was recon-
densed in the liquid storage tank. During this procedure, the temperature
controller was overriden and the container was filled with I.Nz, freezing
the diborane and speeding the recovery process.

The run tank and first-stage hest exchanger (Fig. 83 ) is of similar
physical construction to the storage tank but uses a heated water system
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as the heat source to vaporize and regulate the temperature of the diborane.
The water is heated by a closed loop pumping and heating cycle and the

temperzsture can be controlled to within a few degrees.

The second-stage heat exchanger is located inside the test capsule and
consists of three parzllel copper pipes filled with copper rivets. The.
pipes are wrapped with heater tapes and insulated, Fig. 84. In a test,
diborane was not admitted to this section until the vacuum system and all
electrical systems had been checked out, minimizing the chance of any

delay. The gas remainedin this section for three minutes before the test

began.

After the testwas completed, all valves between the second-stege heat
exchanger and the ligquid storage tenkwereopened and the diborane is
reliquefied. High-pressure heliumwas added at the downstream end of the
system to help force the diborane back into the tank.

The only time that safety equipment was reguired was in the initial
transfer of diborane into the storage tank from the shipping cylinders.

All other operations were performed remotely with the area cleared. Since
the storage tank contained sufficient diborane for several hyperflow series,
personnel exposure wes minimized. Additionzl safety was also provided on
occasion by storing the diborane frozen minimizing the vapor pressure in
the storage tenk. This capability of freezing also made the recovery of

almost all unused gas possible.

In the activation of the diborane fecility, a major safety precaution was
taken in the use of nontoxic ethane as a simulant for the diborane. The
physical properties of the two compounds are close enough that all major
facility features could be checked by using ethane. All problems with
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the original facility design and operation were uncovered using ethane
ard corrected so that all operations were routine by the time the

diborane was first introduced.

ALTITUDE SIMULATION SYSTEM

A twofold altitude~-simulation system wac used in this phase, the main steam
ejector end an auxiliary small steam ejector. The main system, consisting
of three diffuser stages, is capable of maintaining an altitude of 120,000
feet for 150 seconds of test operation. The first stage is driven by the
engine, while the other two stages arc powered by supersonic steam

ejectors. The oversll system is shown in Fig. 85.

The auxiliary ejector unit is supplied by steam from the main boiler
plant. This ejector, although not capable of maintaining altitude condi-
tions during test operation, permits evacuation and facility checkout

before starting the large system. This served three objectives.

1. All systems were checked out before an engine test was
committed (of the unsuccessful tests in the previous tasks,
many were caused by problems which could have been found
during a pretest altitude checkout).

2. This procedure eliminated the large jolt to the thrust system
which can be caused by the rush of air past the nozzle when

the main hyperflow is started.

3, This system preventedthe main hyperflow cutoff transients
from affecting the engine hardware by blocking the high-

pressure wave that travels up the diffuser sections.
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These objectives were achieved by proper sequencing of the facility ducting

valves.

The sequence of the velves, illustrated in Fig. 85 and operation of the

vacuum system were as follows:

1. Close valves 1, 3, 4, 6 and 7
2. Open valves 2 and 5

%, Evacuate the B3 capsule and vacuum duct using the steam plant
diffuser

- 4. Start the large hyperflow steam re',jector
5., Close vulve 5 and open valve 1
6. Conduct tests
7. Close valve 1 and open velve 5
8, Terminate large hyperflow
9, Close valve 2
10. Terminate small diffuser

11. Open valves 1 and 3 and retum test capsule to ambient pressure

The altitude test capsule consists of a cylinder approximately 16 feet in
diameter and 40 feet long with hemispherical ends. The aft end is
connected tothe altitude-simulation system by a 48-inch duct. The forward
end of the cepsule is mounted on a movable trolley for access. The opened
capsule is shown in Fig. 86, The ducting leading to the main ejectors
and the isolation valve are also evident in this figure. TFig. &7 is a
view of the inside of the cepsule with the 70-percent bell nozzle installed.
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ENGINE INSTALLATION

The engine is installed in the test stand in such a way that it is free of
external interference. No corrections have to be made for thrusts caused
by supports or propellant lines., The diffuser inlet is adjusted to ensure
that there is no effect of the engine plume within the capsule.

Engine Mounts

The thrust system is illustrated in Fig. 88, The injector (not shown) is
mounted to the thrust plate by three longitudinal standoffs. This plate is
supported by one horizontal and two vertical tie rods. Mounted to the
thrust plate is a flexure and spacer followed by a dual-element load cell.
Two alignment plates seperate the two load cells and flexures. This
assembly is mounted to a rigid I-beam. Also mounted to this I-beam is an
hydrsulic ram and the calibration load cell. At the end of the calibration
cell is a ball joint in a yoke that is tied to the thrust plate by two tension
rods, To minimize the cantilevered engine weight, a vertical rod and a
horizontal rod are attached to the nozzle skirt, Fig. 87. These rod
supports are mounted in clevis fittings through swivel tie rod ends.

The engine thrust is simulated by pressurizing the hydraulic ram which
moves the cealibration cell putting the two tie rods in tension. In this
manner, the simulated engine thrust is transmitted through the centerline of
the thrust system putting the dual-bridge load cells in compression in the
same way the engine puts them into compression. During test operation the

tie rods wereloosened and do not interfere with engine movement.
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V Propellant Lines

The engine plumbing consists of instrumentation lines and propellant feed
lines, To minimize test stand effect, all the propellant plumbing is
introduced to the injector radially, with relatively long straight actions
to allow unrestrained movement of the chamber assembly. The engine
instrumentation elso has the same feature. The linés are "S" shaped with
long leg sections and are fabricated from 1/4-inch iight wall tubing.
There is no insulation or Jacketing on any lines downstream of the rigidly

mounted valves or transducers.

Electrical Connections

The engine electrical connections consist of numerous thermocouple wiring
and electrical comnections which are attached to the temperature probes.
These wires (Fig. 87) are connected to a "Jones" strip physically mounted
to the hardware. From the terminsgl strip, the wires are bundled and
wrapped in asluminum foil, terminsting st & master strip mounted to the

stand support.

Diffuser

The diffuser extension (Fig. 87 ) is 40 inches in diameter. When the
T70-percent bell hardware is instelled in the stend, there is a l-inch
axial gap from the exit of the bell to the inlet of the diffuser. When
the 15-degree cone is installed, the nozzle rrotrudes into the diffuser
16 inches. When the low-area-rstio nozzle is used, a cylindrical diffuser
extension is installed to encapsulate the engine exhaust plume.
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INSTRUMENTATION

Throughout this program, the sole test objective has been the acquisition
of high quality data. Therefore, special emphasis was placed upon instru-
mentation amd instrumentation systems. In this phase of the program small
differences in perfomance between different propellants and nozzles were
to be determined. To ensure still more accurate detas, further improvements
were made in the instrumentation system for Phase II, including the use of

a new digitel data scquisition system.

In this task, one nominal value of chamber pressure was used for most tests
with only a minimal devi.tion in propellant flows occurring during mixture
ratio surveys. Therefore, it was possible to select instruments that
operated in the optimum portion of their range. Because certain parameters
are critical in determining engine performance (e.g., flowrates, thrust and

chamber pressure) the criticel items in these measurements were made
redundant,

The location of major test stand instrumentation is shown schematically in
Iig. 89. The exact location of the thrust chamber instrumentation for the
70-percent bell is shown in Fig. 90 and 91. The instrumentation for
the cone is similar,

Data Acquisi tion System

During this phase of the program, primary deta acquisition was by
means of a digitel recorder. This digital recorder provides high
accuracy with immediate response and is used for precise performance
characterization. The digital unit is an Astrodata Model 2013-100
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portable, a 100 channel system. The recorder nac a sampling rate fixed
at 11,120 samples per second. Using all channels, as on this progranm,
the sampling time is aprroximetely 11 milliseconds. Oscillograph measure—

ments are used to monitor transient engine performance,

One of the system improvements which resulted from the installation of

the digital data acquisition system was the capability of greatly reducing
the required test duration to achieve stable high-quality data. After the
early activation tests with the digital system, it was found that the
critical engine and feed system measurements were stable after approximately
250 msec of start transient as shown in Fige 92 for a typical activation
test. With this new capability, individual test durations were decressed
to 2.4 and 1.2 seconds. The first test of each series is long and the

reme ining tests are short.

Thrust Measurerent

Thrust measurement is made by two-series Baldwin-Lima~Hamilton double-
bridge load cells. Each cell (2000 pourds) provides a redundant measure-
ment by the double-bridge network, resul ting in four separate thrust
measurements. Calibration of the load cells is conducted before and safter
each test series by means of the calibration load cell and a hydraulic
loader, Fig. &8, The calibration load cell is calibrated against a
proving ring traceable to the National Bureau of Standards.,

Pressure Measurement

Pressure transducers are of the bonded strain gage, d-c type. The
calibretion and verifications of the pressure transducers are accomplished

with 2 dead weight tester or similerly precise calibretion device traceable
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to the National 3Zureau of Standards. For LOX clean certified pressure
transducers, the calibration and verifications are accomplished by intro-

ducing G, and measuring the pressure on a Heise gage.

2

Flow Megsurecment

Fuel flowrate 1s measured by a specielly fabriceted flow section

containing a sonic venturi. This section, having upstream pressure and
temperature and downstream pressure measurement, was calibrated by the
manufacturer and is the same unit as previously used in Phase I. When

measuring B2H6 flowrate, a second venturi is used in parallel.

Fluorine flowrate is measured using redundant l-inch Foxboro turbine-

type volumetric flowmeters, Fig. 82. These meters were calibrated using
liquid freon. These meters resulted in a more accurate flow measurement
than achieved in Phase I for which water calibrated meters were used.
Flowmeter disagrement throughout the program was normelly approximately

0.1 percent.

Temperature Measurement

Oxidizer temperature is measured using Rosemount shielded platinum
resistance bulbs, immersed in the liquid stream. Iron-constantan thermo-
couples are used for the hydrogen temperature measurements and for the
major portion of the thrust chamber temperatures used in the heat transfer
calculations. Chromel-Alumel thermocouples are used in the remaining

positions.
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Heet Flux Measurement

Heat flux detemmination is based upon the temperature-time history of
special control sections embedded in the thrust chamber wall. The
temperature measuring device consists of a thermal isolation segment with

a thermocouple located on the back side of the segment.

The isolation segments used in the test progrem ere of two types. These
are depicted in Fig. 93. Type (a) is instzlled in the combustor and
throat regions to measure high heat flux levels, whereas Type (b) is
installed in the nozzle section where heat flux is low. Type (a) is made
by cutting isolation grooves into the copper wall to reduce three dimen-
sionzl heat transfer effects. Thermal plug Type (b) is made by inserting
steel plugs into the steel no:zle wall. Each plug contains a thin copper
wafer to which is bonded a thermocouple. In this way, heat loss from the
plug is minimized and the meximum possible temperature response is
obtained.

Visual Recording

Hot-fire test coverage is made by two Gazap 16-64 frps, 16 mm color
camerzs. These cameras are located high in the capsule, one on each side,
and view the engine and associated plumbing immediately behind the engine.
In addition, all tests are monitored with a closed circuit television

camerae.
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Schematic Cross-Sections of Heat Transfer Isolation Segments

Figure 93 .
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TEST HARDWARE

The major items of test hardware were identical with those used in the
earlier portions of the test program end are described in detail in

Ref. 4. The only exception was a new combustion chamber needed to
replace the original chamber which had undergone nearly 300 testss. The
only test to test hardware variation was the nozzle, of which two were
used, an aerodynamic optimum 70-percent bell and a 15-degree cone. The
cone was used in two configurations, 4:1 asrea ratio for injector verifi-

cation and 60 for performence tests.

Injector

The injector configuration used for all Phase II testing is shown in
Fig. 94. It is designed for gaseous fuel and ligquid oxidizer and
consists of triplet elements in a square patterm. DBach triplet element
has two impinging oxidizer ports end a central fuel port. The outer
elements of the grid are rotated to prevent direct impingement of the
oxidizer fan on the chamber wall. The same injector was used for all

propellant combinations tested in Task VI.

Combustion Chamber

The combustion chambers consist of heevy wall copper cylinders designed
for heat sink operation. This differs from the original chamber in the
thickness of the chamber wall, 2 inches rather than 1 inch. The heavier

wall hes permitted larger numbers of tests in a hyperflow series.
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Nozzles

The nozzle includes the contraction zone, the throat, and the expansion
zone. The contraction region, throat end expansion region to an area
ratio of four are copper. The expansion region, from area ratio four to
sixty, is steel. The wall radius of curvaturc upstream of the throat is
1.5 times the throat radius of 2.1 inches.

The 15-degree conical mozzle (Fig. 95 ) has a wall radius of curveature
downstream of the throat of 3.635 times the throat radius. For low area
retio injector tests, the steel skirt is removed lezving an area ratio

four nozzle.

The TO-percent length bell nozzle (Fig., 96 ) has a wall radius of
curveture downstream of the throat of 0.392 times the throat radius. This
value was chosen as being machineable btut close in performence to an ideal
point expansion. The wall contour was aerodynamically optimized for 60:1
area ratio and 70-percent length, using actual exhaust products.

157






26./7 |
/4 50 3
r_'_ .
-:':J' \ )
- |
SECTION BB :
) 3 PLICES .
sede —i
i
]
|
- £
- @od DA 1
t Te-is
4200 ovd '
1 €-3
£z
e —— A LEE

v
b
X

i 1000 i i 11
; i |







32.52 O/A4
%
=
_
E L 45032
;; SECTION A~ A
=
= Figure 95. Long Throat 15-Degree Conical
Nozzle Design
coupout BAE
=
=
é 159







IECT/ON B~DB
Crw) 3 LULCES

arre




(LT i Il




32.52 O4

E-/5

€0

J8.795

SsECT/ION A~

FQLOGT PHAVE b 9\

Figure 96.

161

70-Percent Bell Nozzle Design







NOMENCLATURE

Measured Performance Variables

F Thrust
MR Ratio of oxidizer mass flowrate to fuel mass
_ flowrate
% P Local static pressure
; P& Ambient pressure of the engines surroundings
- Pc or PCNS Stagnation pressure for nozzle throat conditions
= Pe Exit pressure at the nozzle wall
w Mass flowrate

Defined Performance Variables

= CF Thrust coefficient,
_ F
= _nozzle
= Pc A*
= C* Characteristic velocity,
_ PE A* g
%
= ¥
= nozzle
= g oT g, Force conversion constant in equation
= F=_ma_, 32174 lbin-ft/secz
go 1b
f
== Is Specific impulse, Fe ngine/ LR ngine

Performance Efficiencies

Y Efficiency, delivered

reference value

” BL Boundary layer efficiency

7 cF Thrust coefficient efficiency

7" Characteristic velocity efficiency

7 Geometric or divergency efficiency

7 "e Specific impulse heat loss efficiency
IS

n HL Characteristic velocity heat less efficiency
c* o

7 In 3 Injector efficiency

163



Uj IS Specific impulse efficiency
/™ Reaction kinetic efficiency
7 mo Thrust chamber efficiency

Heat Transfer, Thermodynamic and
Boundary Layer Variables

1

B Biot number
Specific heat capacity

i

Specific heat capacity for a constant pressure
process

C Specific heat capacity for a constant volume
process

F Fourier number, at
o —t
{2
Specific enthalpy

or h Heat transfer coefficient of exhaust gases

h

h

H Enthalpy

k Thermal conductivity
M Mach number

MW Molecular weight
n

Isentropic coefficient defined so that PV- -
constant for an isentropic process. For
ideal gases n = Y

Prandtl number %‘_

Gas constant, R/MW

Universal gas constant

Entropy
Local static temperature

NPr

R

R

8 Specific entropy
S

T

'1‘Bw Back wall temperature
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JHE

Il

Tc
Ty
T
uw
Y
e
v
v
VA
¢
Y
6

*

e

8 o

8
A
/u
P

Pe
Geometric Variables

A

A

e

Al'

L*

...i*l\o “E ot o

Stagmation temperature

Initial temperature

Adiasbatic wall temperature

Exhaust gas velocity at the nozzle exit at the wall
Velocity

Volume

Compressibility, P = 2 PRT

Thermal diffusifity, &/ P c

Specific heat ratio, Cp/Cv

Displacement thickness at the nozzle exit
Momentum thickness at the nozzle exit

Eigen value in solution of second order
differential equation for heat conduction

Viscosity
Densify
Exhaust gas density at the nozzle exit at the wall

Local area

Nozzle exit area

Nozzle Throat Area

Effective nozzle throat area,

p*v*
Combustion Chamber characteristic length
Vglﬁ:g C,V,
Nozzle wall thickmess
Nozzle exit radius
Nozzle wall angle with the axim at the nozzle exit

Wall radius of curvature nominalized to throat radius,
usually refers to throat wall contour
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Subscripts

(
(

)

Corrected

)Delivered

)Ideal or

)

Theor.

)measured

)

nominal
)R
)

Vac

Adjusted from a measured value using an
analytical or empirical factor

Actwal gerformance as contrasted with
Ideal

Reference value

Actual data

Adjusted to some nominal conditions using
analytical corrections

Reduced value, actual valus divided by
critical conditions

Vacuum conditions
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APPENDIX A
TEST DATA SUMMARY

The basic test measurements are summarized in Table A-l. In each
case the value shown represents the average of the redundant measure-—

ments. The efficiencies shown are uncorrected values defined as:

Vo« = PC’NSATé
C *

W‘to‘tal c theo

Frac
7y

I
total vacfheo

A-1






TABLE A-

ALy o
=~ A

1968 Tests TEST DATA SUl
T8ST | PROPEL- OXID | OXID OXID | OXID FUEL FUEL FUEL | MIXT
NO. | LANT DENSITY| TEMP PRESS | FLOW- |VENTURI | VENTURI| FLOW- | RAI
RATE PRESS TEMP RATE
377- (lbm/ft} (°F) (psia) |(1lbm/sec (psia) (°F) {(1bm/sec
| 033 -2 | Fp -0p| € =) | 89,65 |=303.70 | L10.L3} 5.160 | 500,Lk | 52.43 | 1,003 | 5.U
03L (83.8)/ | € =L | 89469 |-303.96 | 39L.10 ] 1,997 | 578.1h | 58,89 | 1,159 | L3
035 CHy |€ =1L | 89.35 -302.47 | LOL.19 | 5.100 510.34 | 58,12 | 1.019 | 5.0
036 € =L | 68.70 | 299,60 | L22.7l| 5.228 | L5130 | 56,61 | 0896 | 5.8
037 € =L | 88,22 |=-297.6L | 413.80 5,163 | 172,53 58,48 | 0,941 | 5.k
038 r =L | 88,02 |-296.90 | 388426 | L.952 651.95 | 6673 | 1.296 | 3.8
039 . € =L | 85.98 |-288.5L| LOL.65 | 5,011 | L81.16 55,52 | 0.961 | 5.2
oo ¥ T€ =u | 87.h9 | 29157 | 16,8l | L.9o3 | L61.32 1 58,89 | 0.920 543
omr ¥ € =L | 67.00 |-292.6l| 102,33 | L.967 | 512.L0 | 60.29 1,021 | L.8
o2 * € =L | 85.67 |=267.33 | 398.81| L.779 | 556.21 61,11 | 1.110 | k.3
oL3 =2 | Fp = 0p | 15° Cond 86.77 292,78 | L23.5L | 5.078 | 532.12 | L6.98 | 1.073 L.7
| ol (82.3)/ | 15° Cond 86,95 | -293,58 | L10.79 1,998 | 626.l1| 55.35 | 1.262 | 3.9
oLs CH, 15° Cond 86,58 | =292.,03 | L1h.55 5,109 | 556027 | 5654 | 1.115 k.5
_ols 15° Cone 86.0L | ~269.7L | 431,53 | 5.226 | 500.0L 56,67 | 06999 | 5.2
oL7 150 Cond 85.55 | ~287.78 | L27.06 5.134 | 515.73| ©58.87| 1.030 L.9
ol8 15° Cone Facility Malfupction B
o9 -1 15° Cong 85.8L | =289.07 409,81 | 5,089 555.94 50.86 | 1,120 | k.S
050 150 Cond B86.uls | =291.40 | L22.82 5,135 L97.65 60,27 | 0.991 | 5.l
051 15° Gond 86,43 | -291.k2 | L16.72 5,131 | 511,12 | 6h.50| 1.012 | 5.0
052 15° Cond 862l | =290.72 | 100,54 | 5.031 600.55 | 71.63 | 1.182 | L.2
053 15° Cond 85.88 | -289.27 | L01.90 5,034 | 629.72 | T76.82 | 1.230 L.C
oSk 15° Cond 85,71 | -288.48 | L17.28 5,066 | 537.58 | 75.98 | 1.0L7 L.t
055 =2 70% Bell 88.Lk | -300,15| U27.90| 5.229 525,72 | 50,43 | 1.057 | LS
056 70% Bell 87.78 | =297.3L| L3L.LO 5.3k2 | L77.53 | L9.90| 04957 5.t
057 70% Bell 87.16 | -29L.80 | L19.37 5,207 557.26 56,62 | 1.117 | L
058 708 Bell B85.61 | =289,23 | L19.89| 5.035 657,10 | 6L.85| 1,310 | 3.
059 70% Bell 8L.7L | =284.90| 112,55} L.9T7 73L.80 | 70.k2 | 1.,L56 | 3.
069 704 Ball 8,70 | =28he7h| L30.79 | 5.083 516,32 | 62,16 | 1,026 | k.
* __Ank
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%E A-1
A SUMMARY
, f VACUUM
. |MIXTURE| TOTAL | Pe Poyg | VACUUM | THROAT | EXIT " SPECIFIC
| RATIO | FLOW- (nozzle | THRUST | AREA | AREA nc |Mec, | NP %TEELSE /
(1bm/sec) (psia) D%EL?ZI (1of) |(sq ini) (sq in.)| (unc) | (unc) (unc) 1b:3c
6.163 92,1 95.4 | 2032.0 | 13.73 | 55.40 | 98,21 | 95.60 | 93,89 | 329.7
6,155 91.5 9L.8 | 2029.3 | 13,77 | 55.L0 | 99,39 | 95.93 | 95.3L | 329.7
6.120 | 91.0 | 9h.3 | 2022.2 | 13.79 | 55.40 | 98.29 | 95.95 | 931 | 33045
6.126 | 69.7 | 92.9 | 2001.0 13.81 | 55.10 | 96,80 | 95.92 | 92,86 | 326:6
R 6,204 | 90.3 | 93.5 | 200h.3| 13.83 | 55.0 | 97.70 | 95.h0 | 93.21 | 328l
3.821 | 6.248 | 911 | 9L.3 | 2031.8| 13.8L | 55.h0 | 98,88 | 95.85 | 9L.78 | 325.2
5,215 | 5.971 | 88,4 | 91.6 | 13.75 | 55.40 | 97.78 | ©5.05
5.3L5 | 5.820 | 90.9 9l.1 13,78 | 55.40 | N
L.863. | 5.988 88.5 9147 13.83 | 55.40 | 98,17
L.30h | 5.889 | 87.6 | 90.8 13.78 | 55.L0 | 99,63
L.730 | 6.151 | 91.7 | 95.0 | 236h.1| 13.71 |829.58 | 98.33 | 93.13 | 91.57 | 38L.3
3961 | 6260 | 92.5 | 95.8 | 2379.9| 13.73 |829.58 | 99.33 | 92,96 | 92.33 | 380.2
[s80 | 6.22h | 92.6 | 95.9 | 2390.5| 13.7h |829.58 | 98.55 | 93.17 | 91,83 | 384e0
5,231 | 6,225 92,9 96.2 | 2380.5| 13.75 |829.58 | 98.07 | 91.92 | 90,15 | 362,k
L.986 | 6.163 91.7 95,0 | 236L.9 | 13.76 |B829.58 | 98.10 | 92.67 | 90.91 383.7
Lokl | 6.209 | 92.8 | 96.1 | 2387.1| 13.70 | 629.58 | 98.87 | 93.06 | 92.01 | 38W.5
5.181 | 6,126 90.9 | She2 | 2329.9| 13.73 | 829.58 | 97.53 | 92,03 | 89.75 | 380.3
5.070 | 6.3 | 9Ll | 9h.7 | 2348.3| 13.7h |829.58 | 97.93 | 92.32 | 90.u1 | 382.2
: | b.258 | 6.213 | 92,0 | 95.3 | 2377.7| 13.75 |829.58 | 98.96 | 93,21 | 92,2k | 387
] k092 | 6.265 92.0 95.3 | 2390.3 | 13476 | 829.58 | 98468 | 93462 | 92439 381.6
f L6839 6,113 89.1 9243 2296.5| 13.77 | 829.58 | 96.L1 | 92.63 89.30 37547 |
1 LoL6 | 6,287 93.h 96.7 | 2L10.9| 13.75 | 823.21 | 97.96 | 92.83 | 90.93 383.5
5.580 | 64299 | 93.2 96.5 | 2371.3| 13.79 | 823.21 | 97.38 | 90.6L | 88,26 376.5 |
1 L.660 6.320 93.5 96.9 2L17.8| 13.80 | 823.21 | 98,31 | 92.81 91,24 382.3
3.843 | 6.3L5 91.5 9h.8 | 2360.3| 13,82 | 823421 | 98,08 | 92.5h | 90.77 372.,0
13,18 | 6,133 | 9205 | 95.9 | 239643 | 13.83 | 823.21 | 98.95 | 93.17 | 92,19 | 372.5
L.952 | 6.110 89.9 93.1 | 2320.2| 13.85 | 823.21 | 97.76 | 92,12 | 90.05 379.8
TABLE A-1
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TABLE A-1 C

TEST | PROPEL- | NOZZLE | OXID OXID OXID OXID | FUEL | FUEL FUEL [MIXTUR
NO, LANT TYPE DENSITY TEMP - PRESS FLOW- | VENTURI |VENTURI FLOW- | RATIO
RATE PRESS TEMP RATE
377 (;bm/ft3) (°F) (psia) |(1bm/sec)| (psia) | (°F) | (1bm/sec
061 51 F2~05 15° Cone | 86.25 |-303.02 |389.39 | 4.848 | 436.54 | 92.41 | 1.516 | 3,39
062.=3 | (70.4)/ |15° Cone| 85.86 |-301.25 |393.67 | 4.892 | 483.10 | 101,28 | 1.678 } 2.91
063 3| BH,  |15° Cone| 84,06 [-293.17 |411.54 | 4.900 | 436,58 | 96,16 | 1,502 3,26
064 ' 15° Cone | 84.55 [-295.%1 |408.43 | 4.954 | 451.94 | 89.30 | 1.5%0 | 3,11
065 15° Cone | 84,47 |-294.,98 | 406,03 | 4.919 | 480,84 | 98,26 | 1,679 | 2,92
066 15°.Cone | 83.67 |-291.37 |433.13 5,055 | 403.96 | 89.54 | 1.387 3,64
067 15° Cone | 84,00 |-292.79 |437.82 5,100 | 373,36 | 89.98 | 1,268 4,02
068 -4 15° Cone | 85.00 |-297.31 |412.88 | 4.944 | 464.22 | 111,20 | 1.569 | 3,15
069 15° Cone | 84.59 |-295.63 |380.21 | 4,703 | 567.14 [ 119.96 [ 1.948 | 2,41
070 15° Cone | 84,36 |-294.59 |3e8.80 | 4,744 | 553.80 | 125,37 | 1,874 | 2,53
071 150. Cone 84,05 =293,13 412,62 4,888 535.82 127,08 1,808 2270
072 ~ |25° cone | 83.94 |-292,63 J418.49 | 4,919 | 429.24 |119.07 | 1.414 3,47
0739  IFo-0o/CHy 15° Cone | 83.44 |-201.61 | 412 5,309 | 545 96,97 1 1,074 | 5.006
074 83,01 1=-289,.87 395 5304 61l 28432 1,263 4,560
075 83,18 |-290,58 | 396 5,366 | 598 98,42 | 1,138 | 4,713
076 82,74 |-288.81 | 413 5,481 | 585 99,91 | 1,113 {4,931
oT7 82.87 |-289,17 | 411 15,470 | 560 100,03 | 1,062 ] 5.151
078 83,18 |-290,43 | 424 5,582 529 100,17 | 1.001 } 5,576
079-4 Fo-0-,/ |15° Cone | 82,28 |-286,94 | 427 2,946 324 76,06 | 0,828 | 3,459
080 BoHg 82,65 |-288,97 | 346 2,628 242 71.48 | 0,611 | 4,302
081 81,95 |-286,03 | 349 2,617 | 280 78,49 | 0,700 | 3.787
082 81,86 «285,65 348 2,616 293 84,54 0,729 | 3.59]
083 82,02 |=286,26 %52 2,622 345 92,46 0,864 3.03¢
084 82,10 |-286.60 | 353 2,628 | 242 84,55 | 0.600 | 4.57¢
085 82,14 |-286.771 | 354 2,631 | 282 88,66 | 0,698 | 3.TKC
086 82,34 |-287.61 | 354 2.6%2 | 292 90.83 | 0.721 | 3.6%
087-5 |F-Op/ | € =4 | 80,55 |-280,25 | 413 4,428 | 395 86,25 | 1.364 | 3.24¢
088 2H6 80,74 }=-281,01 414 4,539 410 90,26 1.414 3,21
089 81,05 {-282,36 406 4,519 426 95,46 | 1,465 3,08¢
090 81,30 |-283.25 | 429 4,726 368 90,89 | 1,250 | 3.7%
091 81,97 |-286.03 | 439 4,810 | 356 92,00 | 1,200 | 4.00
092 . 82,32 |-287.64 | 418 4,704 398 96449 | 1.353 | 3.4T
093-3 F2=02/ |70% Bell | 77.06 |-267.62 | 295 3,132 | 570 103,21 | 2,041 | 1.53
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i tinued

t

<

oML | P P, VACUUM | THROAT | EXIT | ﬁ?b* v ?7 VACUUM
FLOW- 2 Ns THRUST | AREA ‘| AREA c ISP |SPECIFIC
RATE (Nozzle (unc) F IMPULSE
stagna- : (une) (unc) s.lb ~sec/
(1bm/sec | (psia) Hgﬂ) (1v1) (sq in,)| (sq. in.] bm
6.364 _ | 96.1 99.6 — |l13.m | g23,21) 97.19 Facilifty Malfunction
6.570 | qa.5 [103.1 — 13.77 .| 823.21| 98.41 | Facililty Malfundtion
6.402 96.2 | 99.6 2603,9 | 13,64 823,21 | 96,11 95,87 | 92,15 | 406.7
6,544 99.4 |103.0 2661.0| 13,69 | 823.21| 97.T4 94,41 | 92,27 | 406.6 |
6.598 [100.1  [103.6 2684.5| 13,73 | ©23.21| 98,21 | 94,37 92.68 | 406.9
6,440 | 97,8 [101.3 2644,5| 13,77 | 823,21| 97,80 94,76 | 92,67 | 410.6
6,368 9,2 | 99.6 2623.5 | 13.80 823,21 | 97,70 | 95,23 | 93,04 | 412,0
6,513 99,1 _ |102.7 2670.7 | 13.66 823,21| 97,67 95,25 | 93,03 | 410.0
6.651 | 1001  [103.7 2680.3| 13,72 .| 823.21] 98.70 9443 | 93,20 |} 403.0
6,618 100,0 ]103.6 2681.0] 13.75 823,21 98,94 94,33 | 93,33 405.1
6.697 | 100.4 |104.0 2706.1] 13.78 823.21| 97.96 94.54 | 92,61 | 404.0
6.333 o5.6 | 99.1 ] 2599.1] 13.81 | 823.,21| 97.63 95,01 | 92,76 | 410.4
62473 95.9 | 98,8 ) 2421,5 | 13,65 1 823,21 2989 | ,928 2878 | 374.1
6.467 95,5 98,9 | 2421.9 | 13,68 | 823,21 2988 | .916 2905 | 375.4
6,504 9642 9946 2441.9 | 13,70 | 823,21 0992 | .912 2915 | 375.4
6,59 97.3 | 100,8 2481.4 | 13,72 | 823,21 ¢9% | .910 4905 | 376.4
6,531 . 95.9 99,3 2450.8 | 13.74 | 823.21 2994 | 905 4901 | 375,2
6.533 95.8 99,2 2459,6 13.75 | 823.21 «993 .01 875 57647
3.TT4. 56T 58,8 1497.8 13.64 823,21 4969 0921 2892 | 396,9
3.238. 47.9 49,6 1268,7 | 13.69 | 823.21 2962 | ,932 897 } 391.8
3,318, 50.4 52,2 1313,9 § 13,73 | 823.21 984 | 892 878 | 39,0
3.345 5045 5243 1323,1 | 13,73 | 823,21 2982 | .01 2894 1 395,6
3,486 53.1 5540 1377.3 | 13.75 | 823,21 $998 | 910 98 | 395,1
3,229 47.7 49,4 1268,2 13.77 823,21 4968 2931 + 900 392,8
3,329 49.6 51,3 1319.5 | 13.78 | 823.21 971 | 932 886 | 39,4
30353 49.7 5145 1327.3 | 13.80 | 823.21 $969 | .922 893 | 395.8
5792 8.4 91,5 1959.2 | 13.62 5540 977 | .97 2944 | 338,3
50952 90,3 93,6 2012,1 | 13.68 55440 976 | %68 :944 | 338,0
5.984 90,2 93,4 2013.6 | 13.71 55.40 973 | 967 .941 | 336.5
5.977 . 89,9 93,1 2021,1 | 13.74 55440 <968 | 972 <940 | 338.2
6,010 0.1 93,3 2030,2 | 13.76 55.40 967 | L9712 2940 | 337.8
6,057 91.0 94,2 2049.1 | 13.79 | 55.40 970 | .9n 2942 1 373.4
5.173. 75.1 77,8 1931.9 | 13.75 | 823.21 998 | .912 2910 | 373.4
E@@;ig;fi,fﬁéiﬁﬁ- C)E?BLR A-1 (Continued)
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OXID |FUEL FUEL FUEL
OXID OXID OXID | FLOW- |VENTURI | VEWTURI | FLOW-
TEST PROPEL- | NOZZLE PENSITY TEMP PRESS RATE PRESS TEMP RATE
No. | Lawt e (1w/ft0)|  (F) (PsIA) |(1tm/sec)| (PS1A) | (deg F) [1bm/sec
094 BoHg 80,65 |-281,15 | 375 | 4.176 | 510 92,04 | 1,838
095 8l.34 |-283.81 | 407 4.495 439 91,42 | 1.532
096 81.57 |-284.72 | 416 4.596 405 96.91 | 1.378
097 8l.44 |-284,10 | 433 4,725 381 95,91 | 1.283
098 81.23 |-283.30 | 415 4,581 406 101,70 | 1.372
099 8L.57 |-284.79 | 409 4,548 461 109.28 | 1.563
100 82,60 |-287.01 | 399 4.528 | 463 124,04 . | 1.559
101-3 °F2/ B % Ball | 96.10 | =244,52 332 4.503 541 88.5 2.011
102 98,06 | 256,69 ) 354 | 4,774 477 87.8 1.712.
103 97.82 | =255.05 | 3712 4,934 427 0.3 1.485
104 98,17 | -257.26 | %18 5,082 282 93,4 1.295
103 98,68 | -260,738 | 414 5,346 355 04,3 | 1,190
106 98,20 | -257.44 | 383 5,060 380 98,3 1.271
107 98,32 | -258,21 | 378 5,012 424 102,6 1.436
108 98,61 | =260,17 | 355 4,814 470 105,8 1.612
122 OF,/CH) 1e0 aone Facility
123 Facility
124 Facility
125 100,18 270,24 298 5794 540 0.8 1.03%3%
126 100,05 =-269,3%2 413 5.943 511 89.9 .976
127 ) Q9,55 | =266.07 | 402 5.826 542 93,8 1,033
128 99,80 | -267.69 | 398__ | 5,782 575 98.8 | 1.092
129 Q8,44 -258,91 393 5.668 608 10%.9 1.151
130 gg.71  1-260.67 1 388 5.942 166 83.9 208,
1969 Tests
001-3 |OF,/BoHg |15° Cone | 99.20 | =264.11) 323 | 4.625 554 9.5 | 2.049
o 100.69 | -273.99| 284 4.893 480 89.8 | 1.715
003 100,76 | -274.49} 279 5.127 438 90.5 | 1.532
004 100.92 | =275.57| 219 5.267 397 91,5 | 1.359
005 100,82 | -274.81] 295 | 5.417 %5 90.0 | 1.239
006 97.75 | -254.96] 288 | 5.300 397 95.8 | 1.349
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TABLE 4-1 Continued

P VACUUM :
] (n?:; le SPECIFIC
Rl o |stagnant| vicvm | mwosr | mxr | 7 | 7 e | 7 M
MIXTURE | RATE c THRUST AREA AREA ¢ 1bf-sec/
| RATIO [1wm/sec)| (Psia) | (ps1a) | (1bf) |(sq in) | (sq in) | (une) | (wne) ISP Tom
2.212 | 6.014 | 893 | 92.5 | 2364.6 | 13.78 | 823.21] .87 | ..9%1 919 | 393.2
2934 lgop7 - | o120 | a5 | 2a24,2 | 13,8 823,211 .aa7 | .93 2917 | 402,73
13.337  |5.974. | 9.4 | 93.7 |2416,1 | 13.84 | €23.21| .983 | ,933 916 | 404.4
3.683 6,008 | 0,6 | 938 |2428,5 | 1386 | epzon ] 978 | .933 3 | 00,2
3.340 15.952 90,0 93,2 2409,.3 13.89 823,21 2985 931 917 404.8
12,910 6,111 91.9 | 95.2 | 2460,0 | 13.9Q | 823.21 | .987 [ .930 918 | 402,5
12,904 l6.087 | o911 | 943 | 24451 | 13093 | eezan |  .oma | 932 L917 ] 401,71
| o200 | 6514 | 980 |a01.5 | 25788 |13.72] lees.1 |.986 |93 |, [595.9
"I 2789 | 6.485 | 8.7 | 102.3 | 2620.7 |13.74' |823.21 | .980 .9%4 915 la04.1
5,322 | 6.419 | 98.5 1001 | 2629.4 [13.77 |s23.21 | .981 .936 918 |409.6
7,885 | 6,327 | 96,7 _|100.2 | 2595.3 | 13,80 |823.21 | .988 .937 916 |a10,2
| 44491 | 6537 | 99.6 |103.,2 | 2683.8 |13.82; |823.21 |.982 .938 2921 l410.6
| =064 | 6.336 | 96.8 |100.2 | 2602.5 |13.85: |s23.21 | .980  |.9% 917 J410.7
3,400 { 6.449 | 98.2 |101.7 | 2642.6 |13.87 |823.21 | .978 .937 917  |a09.8
L2087 | 6.426 | 97.4 ]100.9 | 2618,8 | 13,74 |823.21 | .972 945 919 l07.5
idizer | Valve Malfunction '
- fdiger Valve Mdlfunction
ldizer | Valve Mdlfunction
5.600 | 6.827 |100,1  |105.8 | 2568,0 |13.70 |823.21 [L.002 .868 80 [376.1
6.087 { 6.920 2577.5 113,71 |823.21 891 b372.5
5.640 | 6.850 1101.9  |105.6 | 2s88.2 |13.73  |se3.21 l.008  |.8 893 1377.4
| 5,293 875 |102,7  |106.4 | 2614.2 |33,74 823,21 |,999 2899 898 [580,3
| a.006 §6.819 |102.9  |106.6 | 2618.5 [13.76  [823.21  D.005  |.904 .08 I1384.0
1 19,922 6.240 | 60,6 62.8 1507.8 13.77 823.21 FacilitviFuel SevaValve Malfunction |
6.674 | 101.7 |105.4 2676.8 | 13,64 | 823.21 | 0,992 | 0.936 | 0,928 401.1
6.607 | 101.0 [104.6 2670.3 | 13,70 | 823.21 | 0,979 | 0,933 0.914 404,2
6.659 102.2 [108.9 2722,6 | 13,73 182321 | 0,977 |0.937 0.916 408,9
6.626 101.7 ]105,3 2719.3 13.76 | 823,21 0.977 | 0,937 | 0.916 | 410.4
6.656 101.9 1105.6 2734,3 | 13,78 | 823.2) n.o82 | 0,9%7 0.920 410,8
6.650 | 102.3 [106,0 | 2751.9 | 13,81 |823.21 | 0.984 [0.938 | 0.924 413 .8

EOLDOUT FrAME )

TABLE A-—j 7(Continued)
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APPENDIX B
IDEAL PERFORMANCE MAPS

This appendix contains theoretical one dimensional isentropic equilibrium
performence maps for the five propellant combinations of interests
/3,85 F,=0,(70-30)/BHgs OF.,/CH,, F,0,(70-30)/CH,, and
F2-02(82.5-l'7.5)/CH4. Data are presented in the forms of characteristic
velocity, vacuum thrust coefficient, amd vacuum specific impulse.

The performance curves were generated for liquid oxidizers at their normal
boiling points and gaseous fuels at T7F. Heats of Formation of the pro-
pellants are listed in Table B-1l., The value for OF2
by the National Bureau of Standards, Ref. 1. The properties of the

combustion products are the recommended JANAF values as of September 1968.

is that recommended

The organization of the figures is shown in Table B-2.

B-1



TABLE B-1

Heats of Formation for Propellants

Propellant Heat of Formation
(kxcal/mole)

Oxidizers

FZ '3 00299

02 -3 o0795

OF2 1.95

F2-02(7O-30) -8.4684

F2-02(82.5 - 17.5) -8.2622
Fuels

BZH6 908

B2
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AFPENDIX C

DIBORANE PROPERTIES

Because the properties of gaseous diborane are not conveniently available
in the literzture, some of the more useful information was compiled and is
presented in this appendix. Thermodynamic date based on Ref. 6 are
presented as outlined in Table Cc-1.

TABIE C-1
Information Figure
Compressibility vs Temperature C-1
Compressibility vs Pressure C=2
Enthalpy vs Entropy C=3
Temperzture vs Entropy C-4
Pressure vs Entnalpy C-5
Density vs Temperature Cc-6
Density vs Pressure C-7

Diborane decomposition data were obtained from Ref. 7 and are shown in

Fig. C-8 and (¢-9. The original deta were taken as pressure rise as a
function of time for selected temperztures. These results were reinter-
preted in terms of percent decomposition for use here. At room temperature
the decomposition is slow and produces hydrogen and higher molecular weight
boron hydrids, At high temperatures the decomposition rate increases and the
products change in the direction of higher molecular weight hydrids and more
hydrogen. Boron is not produced until approximately 900°F. The data as
interpreted from Ref. 7 are in Fig., C-8 Figure C-9 contains a

useful crossplot of the data.
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APPENDIX D

DEVELOFPMENT OF REAL GAS SONIC VENTURI ANALYSIS

Because diborane and methane gas are close to their critical points for
the flow conditions of interest, the standard ideal s venturl equations
camnot be used. Therefore, a calculational procedure including the real

gas effects was developed. The analysis is presented in this appendix.

In the procedure, the virial equation of state is used to generate a
table of thermodynamic properties for an expansion from the initial
conditions. The mass flux at each expansion table point is found and a
power fit of the properties in the region of highest mass flux is used to

find the exact point of maximum mass flux or throat.

All the methods used in calculating flowrate of gases through sonic

venturis start with the steady flow energy equation:

where

W=P AV =FRAV

Rewriting the equation in terms of flowrate yields

I
R zgo (Hl - hz) ’
W = I _ 1

/0: A: ,<'> A

D-1



The basic problem in solving for the flowrate lies in determining the
relationship of h2 and /°2 to h1 and 'ol for an isentropic expansion from
Al to A2.

The exact solution is based upon the fact that the mass flux is maximum

at the sonic throat. Solving for the throat mass flux gives

W z 2'gc‘» (hl ﬁhz) p?.z
) - PO
2 2 2

( CpEAR )

Differentiating with respect to density squared and holding entropy

cons tant

VLR
d (W7A 2g_(h, -h,) /’(d(e‘))s 2
d(R™) | R ALY 0® A
S ('— 82, ) I—ﬁz/-\ s

Rearranging terms end using a power relationship for enthalpy as a function
of density and introducing throat conditions (*) and conditions immediately
above the throat (x) gives:

[hv/s + B(az_p“z)k - l"x]

TG

This equation can be solved for P ¥* by iterative means., With L * known,
h* and W can be calculated.

2 gz ke
kB ©-r" )

D=2
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The calculation procedure used in the numerical solution is to input a
table of pressure, temperature, enthalpy and density along the constant
entropy line corresponding to the upstreem pressure and temperature. The
mass flux for each point in the tsble is then calculated., When the peak in
mass flux is passed, three points are used to find the constants for the

power fit equation. The throat density, enthalpy and the flowrate are
then found,

The simplest and most consistent method of tabulating pressure, tempera-
ture, enthalpy and density for constant entropy was found to be the use of
the virial equation of state using coefficients of the form recommended by
Benedict, Webb and Rubin. The form of the virial equation used is

A - Z/OQQTR

With the compressibility given by:

2 4 5
Z o~ 1+A P +APR +A4/°R +A5/°R
where
el
P =
pcnfico!/RTcrih'cal
F:? = P/Pcriﬁcal
TR = T/Teitical
- 3
A, = B+ B /T, +B, /T,
3
AZ = CO+C|/TR+C3/TR
_ ” 3
A, =CyC7/T,
C. = Cle S RT

3 3
A = E, /TR
D-3



The form of the equation is determined by examining the intermolecular
forces. The constants can be derived either theoretically or empirically.
The constants used for methane were taeken from Ref, 8 and gave highly
accurste values when checked egainst the graphical values shown in Ref.
The constants for diborane were tsken from Ref. 6, The values used

are shown in Table D-1.

The devies tion from perfect gas value of the entropy is given by:

s 2C3/ } |}_ e'c.a”/ona] —
(5 So)/R = [Caﬂ.rks

’ _elp
I:-C—°+C3]6C3R/Oz+

2 T2 R
RAn (ZR)
end
T dt
/
T dt
The function / Ce —< is the ideal gas state entropy and is
o o

tabulated in Ref. 9  for hydrocarbons.
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TABLE D-l

VIRIAL COEFFICIENTS AND

CRITICAL CONSTANTS

3433 R

673.3 psia

0.12469

~0.34697

-0.11609

0.028956

~=0.027045

0.038313

0.051401

0.84333x10

D=5

-4

B,Hg

521.7T R

580.9 pSiB

0.032529

-0.207653

-0,167886

<0.1890356

0.261514

-0.0963183

0.0827739

~0.00048395



The deviation from perfect gas values for the enthalpy is given by:

3C 4 » 2
_ 3 -Ca Pr ]
(h ho)/RT= PR [l-e +

| ° R TS
o y 2
3C, _ C3 —C3/% yo) 2 +
St 27 2T R
// ”
Cy Cz  —Cy A% /04
T3 R t
R
6E, Pn
5T

where ho = /Cp dT is the ideal gas state enthalpy as tabulated in
Ref. 9 ° °

For glven values of inlet pressure and temperaturs; the density, enthalpy
and entropy are calculated using the equations of state. Pressure,
temperature and enthalpy are then tabulated by solving the equations with
the same value of entropy at a set series of densities in the range needed
to find the sonic throat.
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APPENDIX E
THRUST CHAMBER EFFICIENCY PREDICTIONS

The method of predicting thrust chamber efficiency is described in
Section V, The calculations required involve the computation of a
number of individual efficiencies to account for the specific loss modes.
Each figure shows all propellant combinations for ease of comparison.

The C* heat loss efficiencies are also used in calculating predicted

specific impulse from thrust chamber efficiency and injector efficiency
as described in Section V.

The individual efficiencies and the thrust chamber efficiencies for all
cases studied are presented in this Appendix. The organization of the
flgures is shown in Table

E-1
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